Apache Arrow 教程
2024-09-02 16:11:23作者:管翌锬
项目介绍
Apache Arrow 是一个跨语言的开发平台,旨在提供高性能的内存数据交换。它定义了一种通用的列式内存格式,支持多种数据类型,并且可以在不同的计算框架和编程语言之间高效地传输数据。Arrow 的主要目标是消除数据转换和序列化的开销,从而加速数据分析和处理任务。
项目快速启动
安装
首先,确保你的系统已经安装了 git 和 cmake。然后,通过以下命令克隆并构建 Apache Arrow:
git clone https://github.com/apache/arrow.git
cd arrow
mkdir build
cd build
cmake ..
make
sudo make install
示例代码
以下是一个简单的 Python 示例,展示如何使用 Arrow 创建一个表格并打印出来:
import pyarrow as pa
import pyarrow.parquet as pq
# 创建一个表格
data = [
pa.array([1, 2, 3, 4]),
pa.array(['foo', 'bar', 'baz', None]),
pa.array([True, None, False, True])
]
table = pa.Table.from_arrays(data, ['f0', 'f1', 'f2'])
# 打印表格
print(table)
# 将表格写入 Parquet 文件
pq.write_table(table, 'example.parquet')
# 从 Parquet 文件读取表格
table_read = pq.read_table('example.parquet')
print(table_read)
应用案例和最佳实践
数据分析
Apache Arrow 在数据分析领域有广泛的应用。例如,它可以与 Pandas 结合使用,提高数据处理的速度和效率。以下是一个使用 Pandas 和 Arrow 的示例:
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
# 创建一个 Pandas DataFrame
df = pd.DataFrame({
'int': [1, 2, 3, 4],
'str': ['foo', 'bar', 'baz', None],
'bool': [True, None, False, True]
})
# 将 DataFrame 转换为 Arrow Table
table = pa.Table.from_pandas(df)
# 将 Table 写入 Parquet 文件
pq.write_table(table, 'example_pandas.parquet')
# 从 Parquet 文件读取 Table
table_read = pq.read_table('example_pandas.parquet')
# 将 Table 转换回 Pandas DataFrame
df_read = table_read.to_pandas()
print(df_read)
大数据处理
在处理大规模数据时,Arrow 可以与 Spark 和 Hadoop 等大数据框架结合使用,提供高效的数据交换和处理能力。
典型生态项目
Pandas
Pandas 是一个强大的数据分析工具,与 Arrow 结合使用可以显著提高数据处理的速度和效率。
Spark
Apache Spark 是一个快速且通用的大数据处理引擎,Arrow 可以作为 Spark 和外部系统之间数据交换的桥梁,提高数据处理的性能。
Parquet
Apache Parquet 是一种高效的列式存储格式,与 Arrow 结合使用可以提供快速的数据读写能力。
通过以上内容,你可以快速了解和使用 Apache Arrow,并探索其在不同场景下的应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134