Apache Arrow 教程
2024-09-02 18:12:21作者:管翌锬
项目介绍
Apache Arrow 是一个跨语言的开发平台,旨在提供高性能的内存数据交换。它定义了一种通用的列式内存格式,支持多种数据类型,并且可以在不同的计算框架和编程语言之间高效地传输数据。Arrow 的主要目标是消除数据转换和序列化的开销,从而加速数据分析和处理任务。
项目快速启动
安装
首先,确保你的系统已经安装了 git 和 cmake。然后,通过以下命令克隆并构建 Apache Arrow:
git clone https://github.com/apache/arrow.git
cd arrow
mkdir build
cd build
cmake ..
make
sudo make install
示例代码
以下是一个简单的 Python 示例,展示如何使用 Arrow 创建一个表格并打印出来:
import pyarrow as pa
import pyarrow.parquet as pq
# 创建一个表格
data = [
pa.array([1, 2, 3, 4]),
pa.array(['foo', 'bar', 'baz', None]),
pa.array([True, None, False, True])
]
table = pa.Table.from_arrays(data, ['f0', 'f1', 'f2'])
# 打印表格
print(table)
# 将表格写入 Parquet 文件
pq.write_table(table, 'example.parquet')
# 从 Parquet 文件读取表格
table_read = pq.read_table('example.parquet')
print(table_read)
应用案例和最佳实践
数据分析
Apache Arrow 在数据分析领域有广泛的应用。例如,它可以与 Pandas 结合使用,提高数据处理的速度和效率。以下是一个使用 Pandas 和 Arrow 的示例:
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
# 创建一个 Pandas DataFrame
df = pd.DataFrame({
'int': [1, 2, 3, 4],
'str': ['foo', 'bar', 'baz', None],
'bool': [True, None, False, True]
})
# 将 DataFrame 转换为 Arrow Table
table = pa.Table.from_pandas(df)
# 将 Table 写入 Parquet 文件
pq.write_table(table, 'example_pandas.parquet')
# 从 Parquet 文件读取 Table
table_read = pq.read_table('example_pandas.parquet')
# 将 Table 转换回 Pandas DataFrame
df_read = table_read.to_pandas()
print(df_read)
大数据处理
在处理大规模数据时,Arrow 可以与 Spark 和 Hadoop 等大数据框架结合使用,提供高效的数据交换和处理能力。
典型生态项目
Pandas
Pandas 是一个强大的数据分析工具,与 Arrow 结合使用可以显著提高数据处理的速度和效率。
Spark
Apache Spark 是一个快速且通用的大数据处理引擎,Arrow 可以作为 Spark 和外部系统之间数据交换的桥梁,提高数据处理的性能。
Parquet
Apache Parquet 是一种高效的列式存储格式,与 Arrow 结合使用可以提供快速的数据读写能力。
通过以上内容,你可以快速了解和使用 Apache Arrow,并探索其在不同场景下的应用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39