Harvester项目升级失败问题分析:managed chart未就绪的解决方案
问题背景
在Harvester 1.4.0版本升级至1.4.1的过程中,部分用户遇到了升级失败的情况,系统提示"admission webhook 'validator.harvesterhci.io' denied the request: managed chart harvester is not ready, please wait for it to be ready"错误。这个问题主要与Harvester的托管图表(managed chart)状态异常有关。
问题分析
通过深入分析,我们发现导致升级失败的核心原因有两个:
-
网络控制器Webhook资源限制问题:用户曾修改过harvester-network-webhook的内存限制,导致资源规格与系统预期不符。虽然用户已恢复原始配置,但系统仍记录了变更历史。
-
Windows系统代理升级计划配置异常:在cattle-system命名空间下的system-agent-upgrader-windows Plan资源中,缺少了关键的securityContext配置,导致系统无法识别其为有效就绪状态。
解决方案
针对网络控制器Webhook问题
如果用户曾修改过harvester-network-webhook的资源限制,需要确保恢复为默认配置:
resources:
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 10m
memory: 64Mi
针对Windows系统代理升级计划问题
需要通过以下步骤修复配置:
- 使用kubectl编辑问题资源:
kubectl edit plan -n cattle-system system-agent-upgrader-windows
- 确保spec.upgrade部分包含正确的securityContext配置:
upgrade:
securityContext:
windowsOptions:
hostProcess: true
runAsUserName: NT AUTHORITY\SYSTEM
- 保存退出后,系统会自动重新评估资源状态。
技术原理
Harvester使用Fleet管理系统组件,通过Bundle和BundleDeployment资源来管理集群状态。当这些资源的状态不是"Ready"时,系统会阻止升级操作以确保稳定性。在本案例中:
- Bundle资源会监控集群中实际资源与期望状态的差异
- 任何手动修改都会导致系统检测到"Modified"状态
- 升级验证webhook会严格检查所有托管组件是否处于预期状态
最佳实践建议
-
避免直接修改托管资源:对Harvester管理的资源进行修改时,建议通过官方提供的配置接口进行。
-
升级前检查组件状态:执行升级前,建议先检查所有Bundle资源的状态:
kubectl get bundle -A
-
了解系统恢复机制:当遇到类似问题时,可以通过添加diff.comparePatches配置来忽略特定变更。
-
监控关键组件:特别关注harvester-network-webhook等关键组件的资源使用情况,避免因OOM等问题导致状态异常。
总结
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00