Harvester项目升级失败问题分析:managed chart未就绪的解决方案
问题背景
在Harvester 1.4.0版本升级至1.4.1的过程中,部分用户遇到了升级失败的情况,系统提示"admission webhook 'validator.harvesterhci.io' denied the request: managed chart harvester is not ready, please wait for it to be ready"错误。这个问题主要与Harvester的托管图表(managed chart)状态异常有关。
问题分析
通过深入分析,我们发现导致升级失败的核心原因有两个:
-
网络控制器Webhook资源限制问题:用户曾修改过harvester-network-webhook的内存限制,导致资源规格与系统预期不符。虽然用户已恢复原始配置,但系统仍记录了变更历史。
-
Windows系统代理升级计划配置异常:在cattle-system命名空间下的system-agent-upgrader-windows Plan资源中,缺少了关键的securityContext配置,导致系统无法识别其为有效就绪状态。
解决方案
针对网络控制器Webhook问题
如果用户曾修改过harvester-network-webhook的资源限制,需要确保恢复为默认配置:
resources:
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 10m
memory: 64Mi
针对Windows系统代理升级计划问题
需要通过以下步骤修复配置:
- 使用kubectl编辑问题资源:
kubectl edit plan -n cattle-system system-agent-upgrader-windows
- 确保spec.upgrade部分包含正确的securityContext配置:
upgrade:
securityContext:
windowsOptions:
hostProcess: true
runAsUserName: NT AUTHORITY\SYSTEM
- 保存退出后,系统会自动重新评估资源状态。
技术原理
Harvester使用Fleet管理系统组件,通过Bundle和BundleDeployment资源来管理集群状态。当这些资源的状态不是"Ready"时,系统会阻止升级操作以确保稳定性。在本案例中:
- Bundle资源会监控集群中实际资源与期望状态的差异
- 任何手动修改都会导致系统检测到"Modified"状态
- 升级验证webhook会严格检查所有托管组件是否处于预期状态
最佳实践建议
-
避免直接修改托管资源:对Harvester管理的资源进行修改时,建议通过官方提供的配置接口进行。
-
升级前检查组件状态:执行升级前,建议先检查所有Bundle资源的状态:
kubectl get bundle -A
-
了解系统恢复机制:当遇到类似问题时,可以通过添加diff.comparePatches配置来忽略特定变更。
-
监控关键组件:特别关注harvester-network-webhook等关键组件的资源使用情况,避免因OOM等问题导致状态异常。
总结
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00