Harvester项目中的存储类默认设置冲突问题分析与解决方案
问题背景
在Harvester v1.4.0至v1.4.1-rc1版本的升级过程中,部分用户遇到了一个与存储类(StorageClass)相关的升级障碍。具体表现为当集群中存在非默认存储类设置时,升级过程会被webhook拦截,提示"default storage class already exists"错误。
问题现象
在3节点见证(witness)集群环境中,当用户创建了一个自定义存储类(如名为sc2的存储类)并将其设置为默认存储类后,尝试执行Harvester版本升级时会遇到以下错误:
admission webhook "validator.harvesterhci.io" denied the request: managed chart harvester is not ready, please wait for it to be ready
进一步检查ManagedChart状态时,会发现更详细的错误信息:
cannot patch "harvester-longhorn" with kind StorageClass: admission webhook "validator.harvesterhci.io" denied the request: default storage class %!s(MISSING) already exists, please reset it first
根本原因分析
经过深入调查,发现该问题由以下几个因素共同导致:
-
Harvester chart的默认行为:Harvester chart在部署时会自动将
harvester-longhorn存储类标记为默认(default)存储类,通过设置storageclass.kubernetes.io/is-default-class: "true"注解。 -
集群扩展时的自动部署:当集群处于扩展状态(如添加新节点)时,Harvester相关部署会自动扩展,这是由于
management.cattle.io/scale-available注解的存在。 -
webhook验证冲突:当用户已经设置了其他存储类为默认存储类,而Harvester managedchart尝试重新部署并更新变更时,webhook会拦截这种冲突操作,导致升级失败。
解决方案
针对这一问题,开发团队提出了以下解决方案:
-
chart模板条件增强:在chart定义中添加更多条件判断,使用Helm的lookup功能检查是否已有其他存储类设置了默认注解。
-
控制器逻辑优化:当任何非
harvester-longhorn存储类被设置为默认时,Harvester控制器应自动将managedchart中的spec.values.storageClass.defaultStorageClass字段设置为false,避免冲突。 -
临时解决方案:在升级前手动编辑managedchart,将
spec.values.storageClass.defaultStorageClass设置为false。
技术实现细节
修复方案主要包含以下技术实现:
-
Helm模板条件判断:在harvester-storageclass.yaml模板中添加条件判断,确保只有在没有其他默认存储类时才设置
harvester-longhorn为默认。 -
webhook验证逻辑优化:修改webhook验证逻辑,正确处理存储类默认状态的变更请求。
-
超时设置修复:确保所有webhook配置都设置了适当的timeoutSeconds值,避免因超时导致的升级失败。
验证方案
为确保修复效果,建议进行以下验证步骤:
- 创建一个新存储类并将其设置为默认存储类
- 观察managedchart状态,确认没有出现存储类冲突错误
- 执行版本升级操作,验证升级过程顺利完成
- 检查升级后集群状态,确认所有组件正常运行
总结
Harvester项目中存储类默认设置的冲突问题是一个典型的配置管理挑战。通过增强chart的条件判断、优化控制器逻辑和webhook验证机制,开发团队有效解决了这一问题。这一修复不仅解决了当前版本的升级障碍,也为后续版本提供了更健壮的存储类管理机制。
对于正在使用v1.4.0版本且遇到此问题的用户,可以按照提供的临时解决方案进行操作,或者等待包含完整修复的v1.4.2版本发布。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00