探索数据分析新境界:SMOGN——合成少数派过采样技术的利器
2024-05-22 02:51:38作者:廉彬冶Miranda
在数据科学的世界里,处理不平衡的数据集是一项挑战,尤其在回归问题中。现在,让我们来介绍一下SMOGN,一个专为解决此类问题而设计的Python开源库。它实现了Synthetic Minority Over-Sampling Technique for Regression(SMOTER)并添加了Gaussian Noise(SMOTER-GN),使得在处理稀有或罕见值时能更有效地进行预测。
1、项目介绍
SMOGN是Python中唯一的开放源代码实现,专门用于合成少数派过采样技术的回归方法。它的核心功能是在分类数据较少的情况下通过生成新的样本点来平衡数据集。这一创新方法适用于那些需要对连续响应变量进行预测,但这些变量的某些值分布不均或异常罕见的情况。
2、项目技术分析
SMOGN通过K近邻算法(KNN)来决定应用哪种过采样策略:如果观测值之间的距离足够接近,那么就采用SMOTER;否则,将利用SMOTER-GN引入高斯噪声。这种方法能够适应各种复杂的数据结构,并确保生成的新样本既符合原有数据的分布,又能增加多样性。
3、应用场景
- 房地产预测:例如,在房价预测中,高价或低价房源可能非常少见,SMOGN可以帮助我们生成更多的这类样本,从而提高模型预测的准确性。
- 环境科学:如极端火灾天气预测、地下水污染检测等,其中某些关键指标可能异常罕见,SMOGN可以增强这些边缘情况的建模能力。
- 机器学习应用:在地形感知的机器人行走控制、卫星图像驱动的森林火情预测等场景下,SMOGN可改善数据不平衡导致的模型性能下降问题。
4、项目特点
- 兼容性强大:支持Pandas DataFrame输入,自动选择适合不同数据类型的度量标准,以及缺失值的自动处理。
- 灵活参数设置:允许用户自定义对连续响应变量感兴趣的区域,并调整过采样参数以生成更多合成数据。
- 完全Python实现:无须依赖C或Fortran等外部函数,保证了代码的可读性和维护性。
- 丰富示例:提供了从初学者到高级用户的多个实例,帮助快速上手。
开始你的旅程
要开始使用SMOGN,只需要安装Python 3和必要的库(NumPy与Pandas),然后通过pip进行安装:
pip install smogn
之后,只需简单的几行代码,即可在自己的数据集上应用SMOGN:
import smogn
import pandas
data = pandas.read_csv("...")
smogn_data = smogn.smoter(data, y="目标列名")
想要深入了解更多关于SMOGN的用法,请查看官方提供的示例。
总的来说,SMOGN是一个强大的工具,无论你是数据科学家、研究人员还是学生,都能从中受益。其在处理不平衡数据集上的独到之处,使得SMOGN成为了提升回归模型性能的关键助手。赶快加入这个社区,共同推动数据分析技术的进步吧!
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868