探索数据分析新境界:SMOGN——合成少数派过采样技术的利器
2024-05-22 02:51:38作者:廉彬冶Miranda
在数据科学的世界里,处理不平衡的数据集是一项挑战,尤其在回归问题中。现在,让我们来介绍一下SMOGN,一个专为解决此类问题而设计的Python开源库。它实现了Synthetic Minority Over-Sampling Technique for Regression(SMOTER)并添加了Gaussian Noise(SMOTER-GN),使得在处理稀有或罕见值时能更有效地进行预测。
1、项目介绍
SMOGN是Python中唯一的开放源代码实现,专门用于合成少数派过采样技术的回归方法。它的核心功能是在分类数据较少的情况下通过生成新的样本点来平衡数据集。这一创新方法适用于那些需要对连续响应变量进行预测,但这些变量的某些值分布不均或异常罕见的情况。
2、项目技术分析
SMOGN通过K近邻算法(KNN)来决定应用哪种过采样策略:如果观测值之间的距离足够接近,那么就采用SMOTER;否则,将利用SMOTER-GN引入高斯噪声。这种方法能够适应各种复杂的数据结构,并确保生成的新样本既符合原有数据的分布,又能增加多样性。
3、应用场景
- 房地产预测:例如,在房价预测中,高价或低价房源可能非常少见,SMOGN可以帮助我们生成更多的这类样本,从而提高模型预测的准确性。
- 环境科学:如极端火灾天气预测、地下水污染检测等,其中某些关键指标可能异常罕见,SMOGN可以增强这些边缘情况的建模能力。
- 机器学习应用:在地形感知的机器人行走控制、卫星图像驱动的森林火情预测等场景下,SMOGN可改善数据不平衡导致的模型性能下降问题。
4、项目特点
- 兼容性强大:支持Pandas DataFrame输入,自动选择适合不同数据类型的度量标准,以及缺失值的自动处理。
- 灵活参数设置:允许用户自定义对连续响应变量感兴趣的区域,并调整过采样参数以生成更多合成数据。
- 完全Python实现:无须依赖C或Fortran等外部函数,保证了代码的可读性和维护性。
- 丰富示例:提供了从初学者到高级用户的多个实例,帮助快速上手。
开始你的旅程
要开始使用SMOGN,只需要安装Python 3和必要的库(NumPy与Pandas),然后通过pip进行安装:
pip install smogn
之后,只需简单的几行代码,即可在自己的数据集上应用SMOGN:
import smogn
import pandas
data = pandas.read_csv("...")
smogn_data = smogn.smoter(data, y="目标列名")
想要深入了解更多关于SMOGN的用法,请查看官方提供的示例。
总的来说,SMOGN是一个强大的工具,无论你是数据科学家、研究人员还是学生,都能从中受益。其在处理不平衡数据集上的独到之处,使得SMOGN成为了提升回归模型性能的关键助手。赶快加入这个社区,共同推动数据分析技术的进步吧!
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
312
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
244
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
151
178
暂无简介
Dart
605
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
236
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
237
310