EasyEdit项目中WISE方法Tokenizer填充策略的技术解析
2025-07-03 12:12:00作者:董斯意
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略(padding side)选择是一个需要特别注意的技术细节。本文将从技术实现角度深入分析这一设计选择及其影响。
背景知识
在自然语言处理任务中,tokenizer的填充策略决定了在批处理不同长度序列时,填充符号(PAD token)的添加方向。常见的有两种选择:
- 右填充(padding_side='right'):在序列右侧添加填充符号
- 左填充(padding_side='left'):在序列左侧添加填充符号
WISE方法中的实现细节
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略选择与模型类型密切相关:
- 对于Llama-2-chat这类对话模型,默认采用右填充策略
- 对于基础Llama模型,则采用左填充策略
这一差异源于对话模型与基础模型在训练和推理时的不同行为模式。对话模型通常采用右填充以保持生成连贯性,而基础模型使用左填充更有利于某些编辑任务。
技术实现分析
在代码层面,填充策略的选择通过以下逻辑实现:
if 'llama' in model_name.lower():
# 初始化模型和tokenizer
if isinstance(tok, (GPT2Tokenizer, LlamaTokenizer)) and alg_name not in ['ROME', 'MEMIT']:
tok.padding_side = 'left' # 基础模型使用左填充
elif 'mistral' in model_name.lower() or 'llama' in model_name.lower() or 'qwen' in model_name.lower():
tok.padding_side = 'right' # 对话模型使用右填充
潜在问题与解决方案
在实际使用中发现,当使用Llama-2-chat模型时,AutoTokenizer默认返回的是LlamaTokenizerFast实例,这可能导致填充策略与预期不符。解决方案是显式设置use_fast=False参数:
self.tok = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
这样可以确保获得标准的LlamaTokenizer实例,使填充策略设置生效。
对模型编辑的影响
填充策略的选择直接影响标签掩码(label masking)的操作:
- 右填充时,标签掩码可能意外覆盖目标token
- 左填充能确保标签掩码只作用于提示部分,保留目标token完整
这种差异在"only_label"优化目标下尤为关键,因为错误的掩码可能导致模型学习到不正确的编辑目标。
最佳实践建议
基于上述分析,建议在使用WISE方法时:
- 明确模型类型(基础模型或对话模型)
- 检查tokenizer的实际填充策略
- 对于Llama-2-chat模型,考虑禁用fast tokenizer
- 在编辑前后验证标签掩码的正确性
通过遵循这些实践,可以确保模型编辑过程的稳定性和预期效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
【亲测免费】 单片机毕业设计答辩常见疑难问题解答 SQL Compare 13对比数据库工具:快速同步数据库差异的专业利器 S7-1500PLC模拟量模块接线指南:项目核心功能/场景 ANSI/TIA/EIA-232-F标准资源文件介绍:串行通信领域的权威标准 AccessDatabaseEngine2010_X64资源文件介绍:解决OLEDB注册问题,提升开发效率 IntelManagementEngineInterfaceMEIPCI简易通讯控制器驱动程序:优化系统稳定性与性能的关键 ConfigureVirtualSerialPortDriverVSPD串口模拟工具亲测可用:一键创建虚拟串口,调试更便捷 CCSTL参考手册-STL帮助文档:全面掌握C/C++标准模板库 大漠插件python封装介绍:自动化操作的利器,提升开发效率 uniapp上传文件安卓ios文件选择:轻松实现跨平台文件操作
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1