EasyEdit项目中WISE方法Tokenizer填充策略的技术解析
2025-07-03 12:12:00作者:董斯意
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略(padding side)选择是一个需要特别注意的技术细节。本文将从技术实现角度深入分析这一设计选择及其影响。
背景知识
在自然语言处理任务中,tokenizer的填充策略决定了在批处理不同长度序列时,填充符号(PAD token)的添加方向。常见的有两种选择:
- 右填充(padding_side='right'):在序列右侧添加填充符号
- 左填充(padding_side='left'):在序列左侧添加填充符号
WISE方法中的实现细节
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略选择与模型类型密切相关:
- 对于Llama-2-chat这类对话模型,默认采用右填充策略
- 对于基础Llama模型,则采用左填充策略
这一差异源于对话模型与基础模型在训练和推理时的不同行为模式。对话模型通常采用右填充以保持生成连贯性,而基础模型使用左填充更有利于某些编辑任务。
技术实现分析
在代码层面,填充策略的选择通过以下逻辑实现:
if 'llama' in model_name.lower():
# 初始化模型和tokenizer
if isinstance(tok, (GPT2Tokenizer, LlamaTokenizer)) and alg_name not in ['ROME', 'MEMIT']:
tok.padding_side = 'left' # 基础模型使用左填充
elif 'mistral' in model_name.lower() or 'llama' in model_name.lower() or 'qwen' in model_name.lower():
tok.padding_side = 'right' # 对话模型使用右填充
潜在问题与解决方案
在实际使用中发现,当使用Llama-2-chat模型时,AutoTokenizer默认返回的是LlamaTokenizerFast实例,这可能导致填充策略与预期不符。解决方案是显式设置use_fast=False参数:
self.tok = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
这样可以确保获得标准的LlamaTokenizer实例,使填充策略设置生效。
对模型编辑的影响
填充策略的选择直接影响标签掩码(label masking)的操作:
- 右填充时,标签掩码可能意外覆盖目标token
- 左填充能确保标签掩码只作用于提示部分,保留目标token完整
这种差异在"only_label"优化目标下尤为关键,因为错误的掩码可能导致模型学习到不正确的编辑目标。
最佳实践建议
基于上述分析,建议在使用WISE方法时:
- 明确模型类型(基础模型或对话模型)
- 检查tokenizer的实际填充策略
- 对于Llama-2-chat模型,考虑禁用fast tokenizer
- 在编辑前后验证标签掩码的正确性
通过遵循这些实践,可以确保模型编辑过程的稳定性和预期效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758