EasyEdit项目中WISE方法Tokenizer填充策略的技术解析
2025-07-03 14:43:15作者:董斯意
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略(padding side)选择是一个需要特别注意的技术细节。本文将从技术实现角度深入分析这一设计选择及其影响。
背景知识
在自然语言处理任务中,tokenizer的填充策略决定了在批处理不同长度序列时,填充符号(PAD token)的添加方向。常见的有两种选择:
- 右填充(padding_side='right'):在序列右侧添加填充符号
- 左填充(padding_side='left'):在序列左侧添加填充符号
WISE方法中的实现细节
在EasyEdit项目的WISE方法实现中,tokenizer的填充策略选择与模型类型密切相关:
- 对于Llama-2-chat这类对话模型,默认采用右填充策略
- 对于基础Llama模型,则采用左填充策略
这一差异源于对话模型与基础模型在训练和推理时的不同行为模式。对话模型通常采用右填充以保持生成连贯性,而基础模型使用左填充更有利于某些编辑任务。
技术实现分析
在代码层面,填充策略的选择通过以下逻辑实现:
if 'llama' in model_name.lower():
# 初始化模型和tokenizer
if isinstance(tok, (GPT2Tokenizer, LlamaTokenizer)) and alg_name not in ['ROME', 'MEMIT']:
tok.padding_side = 'left' # 基础模型使用左填充
elif 'mistral' in model_name.lower() or 'llama' in model_name.lower() or 'qwen' in model_name.lower():
tok.padding_side = 'right' # 对话模型使用右填充
潜在问题与解决方案
在实际使用中发现,当使用Llama-2-chat模型时,AutoTokenizer默认返回的是LlamaTokenizerFast实例,这可能导致填充策略与预期不符。解决方案是显式设置use_fast=False参数:
self.tok = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
这样可以确保获得标准的LlamaTokenizer实例,使填充策略设置生效。
对模型编辑的影响
填充策略的选择直接影响标签掩码(label masking)的操作:
- 右填充时,标签掩码可能意外覆盖目标token
- 左填充能确保标签掩码只作用于提示部分,保留目标token完整
这种差异在"only_label"优化目标下尤为关键,因为错误的掩码可能导致模型学习到不正确的编辑目标。
最佳实践建议
基于上述分析,建议在使用WISE方法时:
- 明确模型类型(基础模型或对话模型)
- 检查tokenizer的实际填充策略
- 对于Llama-2-chat模型,考虑禁用fast tokenizer
- 在编辑前后验证标签掩码的正确性
通过遵循这些实践,可以确保模型编辑过程的稳定性和预期效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5