EasyEdit项目中WISE持续编辑实验的技术实现解析
2025-07-03 00:33:44作者:钟日瑜
引言
EasyEdit作为一个开源的知识编辑框架,其核心功能之一是对大型语言模型进行持续的知识编辑。本文将深入探讨WISE算法在持续编辑场景下的技术实现细节,特别是针对不同编辑间隔T(1/10/100/1000)的实验设置优化方案。
WISE持续编辑的基本原理
WISE(Weight-space Ensemble for Sequential Editing)是EasyEdit框架中一种高效的持续编辑算法。其核心思想是通过在权重空间构建轻量级适配器来实现知识的增量更新,而无需修改基础模型参数。
持续编辑实验的关键指标是编辑间隔T,它表示:
- 执行T次连续编辑操作
- 然后对这T次编辑的效果进行评估
- 循环这个过程直到完成所有编辑请求
不同T值的实现方案
T=1的实现
这是最精细的编辑评估模式,每次编辑后立即评估效果。实现方式是在编辑循环中直接插入评估代码:
for i, request in enumerate(requests):
edited_model = edit_func(request) # 执行编辑
edit_evaluation(all_metrics, request, edited_model, i) # 立即评估
T=10/100的实现
对于中等规模的编辑间隔,可以采用分批次处理的方式:
batch_size = 10 # 或100
for j in range(len(requests)//batch_size):
# 批量编辑
for request in requests[j*batch_size : (j+1)*batch_size]:
edited_model = edit_func(request)
# 批量评估
for i, request in enumerate(requests[j*batch_size : (j+1)*batch_size]):
edit_evaluation(all_metrics, request, edited_model, j*batch_size+i)
T=1000的实现
对于最大规模的编辑间隔,实际上是先完成所有编辑再进行评估:
# 全部编辑
for request in requests:
edited_model = edit_func(request)
# 全部评估
for i, request in enumerate(requests):
edit_evaluation(all_metrics, request, edited_model, i)
性能优化技巧
在实现持续编辑实验时,有几个关键的性能优化点:
- 权重回退机制:对于WISE等基于适配器的方法,可以通过保存和恢复权重副本来实现编辑状态的"回退",避免重复初始化:
weights_copy = deepcopy(model.state_dict()) # 保存初始状态
# ...执行编辑...
model.load_state_dict(weights_copy) # 恢复初始状态
-
内存管理:持续编辑过程中要注意及时释放不再需要的中间变量,特别是对于大规模模型。
-
批处理优化:对于支持批量编辑的方法,尽量使用批量操作而非循环单条处理。
需要预训练方法的特殊处理
对于SERAC等需要预训练的方法,在持续编辑场景中需要注意:
-
训练数据与评估数据应当分离,训练数据用于构建分类器和反事实模型,而非直接编辑基础模型。
-
实现lifelong学习能力需要:
- 设计增量训练机制
- 实现数据集的分片功能
- 建立知识保留策略
实验设计建议
-
对于不同T值的比较实验,建议保持总编辑量一致(如1000次),仅改变评估间隔。
-
评估指标应当包括:
- 单条编辑效果
- 持续编辑的累积影响
- 计算效率指标
-
对于大规模实验,建议采用分布式计算框架来加速。
总结
EasyEdit框架为知识编辑研究提供了强大的支持,通过合理的代码组织和优化,可以高效实现各种持续编辑实验场景。理解WISE等算法的实现细节,能够帮助研究者更好地设计实验方案,获得可靠的实验结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178