TorchChat项目新增支持共享词嵌入权重功能的技术解析
2025-06-20 15:09:21作者:胡易黎Nicole
背景介绍
在自然语言处理领域,词嵌入(Word Embedding)是模型处理文本输入的基础组件。TorchChat作为基于PyTorch的对话模型框架,近期计划增加一个重要的模型架构特性——共享输入输出词嵌入权重(tied word embeddings)。这一特性已在HuggingFace的LLaMA实现中得到应用,现在将被引入TorchChat项目。
技术原理
共享词嵌入权重的核心思想是让模型的输入嵌入层和输出层共享同一个权重矩阵。这种设计有几个显著优势:
- 参数效率:减少了模型的总参数量,因为不需要维护两个独立的词嵌入矩阵
- 训练稳定性:输出层的梯度可以直接反馈到输入表示,有助于更一致的表示学习
- 内存节省:对于大词汇表模型,可以显著减少内存占用
在实现上,这意味着模型的tok_embeddings.weight和output.weight将指向同一个张量。
实现方案
TorchChat团队提出的实现方案简洁而高效:
- 配置扩展:在TransformerArgs中添加
tie_word_embeddings布尔参数,控制是否启用此功能 - 权重绑定:通过模型加载钩子(load_hook)机制,在Transformer模块初始化时将输入嵌入层的权重复制到输出层
- 兼容性处理:确保该特性与其他模型组件如Safetensors和偏置张量等协同工作
应用场景
这一特性特别适用于以下场景:
- 资源受限环境:在移动设备或边缘计算场景下部署模型时,参数效率至关重要
- 大词汇表模型:当处理多语言或专业领域的大词汇表时,参数共享的价值更加明显
- 知识一致性:确保模型在输入处理和输出生成阶段使用相同的语义表示空间
技术影响
该特性的引入将对TorchChat项目产生多方面影响:
- 模型兼容性:为支持更多预训练模型(如Granite Code系列)铺平道路
- 性能优化:在保持模型性能的同时减少内存占用
- 架构统一:使TorchChat与主流Transformer实现保持架构上的一致性
总结
TorchChat新增的共享词嵌入权重功能体现了框架对模型效率和使用场景的深入思考。这一改进不仅增强了框架的功能完备性,也为开发者提供了更多模型优化的选择。随着该特性的合并,TorchChat将能够支持更广泛的预训练模型,同时保持高效和灵活的特点。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.84 K
暂无简介
Dart
599
132
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.07 K
616
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
774
74
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
787
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
464