敏感词过滤库sensitive-word实现多敏感词联合匹配的方法
2025-06-09 13:33:02作者:齐添朝
在实际应用中,我们经常会遇到需要同时匹配多个敏感词才能触发过滤逻辑的场景。例如,系统要求文本必须同时包含"特定"和"内容"两个敏感词才需要进行处理,单独出现其中任意一个则不触发过滤。本文将详细介绍如何基于sensitive-word库实现这种多敏感词联合匹配的功能。
基本原理
sensitive-word库本身提供了基础的敏感词检测功能,可以返回文本中匹配到的所有敏感词。要实现多敏感词联合匹配,我们需要在获取匹配结果后,进行额外的逻辑判断。
实现步骤
1. 配置敏感词库
首先,我们需要将所有相关的敏感词都配置到词库中:
SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
.wordDeny(new MyWordDeny()) // 添加自定义敏感词
.init();
2. 执行敏感词检测
使用库提供的方法检测文本中的敏感词:
String text = "这是一段包含敏感词a和b的文本";
List<String> wordList = sensitiveWordBs.findAll(text);
3. 自定义联合匹配逻辑
在获取到匹配的敏感词列表后,我们可以实现自定义的联合匹配逻辑:
public boolean isMatchAllRequired(List<String> matchedWords, String... requiredWords) {
Set<String> matchedSet = new HashSet<>(matchedWords);
for (String required : requiredWords) {
if (!matchedSet.contains(required)) {
return false;
}
}
return true;
}
4. 完整使用示例
// 定义必须同时出现的敏感词
String[] requiredWords = {"a", "b"};
// 检测文本
String text = "这是一段包含a和b的文本";
List<String> matchedWords = sensitiveWordBs.findAll(text);
// 判断是否同时匹配
if (isMatchAllRequired(matchedWords, requiredWords)) {
System.out.println("文本同时包含所有必需的敏感词");
} else {
System.out.println("文本未同时包含所有必需的敏感词");
}
高级应用
1. 权重匹配
可以为不同的敏感词设置权重,当匹配的敏感词总权重达到阈值时才触发过滤:
Map<String, Integer> wordWeights = new HashMap<>();
wordWeights.put("a", 1);
wordWeights.put("b", 2);
// ...其他敏感词权重
int totalWeight = matchedWords.stream()
.mapToInt(word -> wordWeights.getOrDefault(word, 0))
.sum();
if (totalWeight >= THRESHOLD) {
// 触发过滤
}
2. 组合条件匹配
实现更复杂的匹配逻辑,如"(A且B)或(C且D)":
boolean condition1 = isMatchAllRequired(matchedWords, "A", "B");
boolean condition2 = isMatchAllRequired(matchedWords, "C", "D");
if (condition1 || condition2) {
// 触发过滤
}
性能优化建议
- 对于频繁使用的联合匹配条件,可以预先将requiredWords转换为Set,避免每次匹配时重复创建
- 如果文本量很大,可以考虑先进行快速筛选,排除明显不符合条件的文本
- 对于固定的联合匹配条件,可以将其封装为独立的策略类,便于复用和管理
总结
通过结合sensitive-word库的基础检测功能和自定义的后处理逻辑,我们可以灵活实现各种复杂的敏感词匹配需求。这种方法既利用了现有库的高效检测能力,又通过上层逻辑满足了特定的业务需求,是一种实用且高效的解决方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
710
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460