敏感词过滤库sensitive-word实现多敏感词联合匹配的方法
2025-06-09 10:34:13作者:齐添朝
在实际应用中,我们经常会遇到需要同时匹配多个敏感词才能触发过滤逻辑的场景。例如,系统要求文本必须同时包含"特定"和"内容"两个敏感词才需要进行处理,单独出现其中任意一个则不触发过滤。本文将详细介绍如何基于sensitive-word库实现这种多敏感词联合匹配的功能。
基本原理
sensitive-word库本身提供了基础的敏感词检测功能,可以返回文本中匹配到的所有敏感词。要实现多敏感词联合匹配,我们需要在获取匹配结果后,进行额外的逻辑判断。
实现步骤
1. 配置敏感词库
首先,我们需要将所有相关的敏感词都配置到词库中:
SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
.wordDeny(new MyWordDeny()) // 添加自定义敏感词
.init();
2. 执行敏感词检测
使用库提供的方法检测文本中的敏感词:
String text = "这是一段包含敏感词a和b的文本";
List<String> wordList = sensitiveWordBs.findAll(text);
3. 自定义联合匹配逻辑
在获取到匹配的敏感词列表后,我们可以实现自定义的联合匹配逻辑:
public boolean isMatchAllRequired(List<String> matchedWords, String... requiredWords) {
Set<String> matchedSet = new HashSet<>(matchedWords);
for (String required : requiredWords) {
if (!matchedSet.contains(required)) {
return false;
}
}
return true;
}
4. 完整使用示例
// 定义必须同时出现的敏感词
String[] requiredWords = {"a", "b"};
// 检测文本
String text = "这是一段包含a和b的文本";
List<String> matchedWords = sensitiveWordBs.findAll(text);
// 判断是否同时匹配
if (isMatchAllRequired(matchedWords, requiredWords)) {
System.out.println("文本同时包含所有必需的敏感词");
} else {
System.out.println("文本未同时包含所有必需的敏感词");
}
高级应用
1. 权重匹配
可以为不同的敏感词设置权重,当匹配的敏感词总权重达到阈值时才触发过滤:
Map<String, Integer> wordWeights = new HashMap<>();
wordWeights.put("a", 1);
wordWeights.put("b", 2);
// ...其他敏感词权重
int totalWeight = matchedWords.stream()
.mapToInt(word -> wordWeights.getOrDefault(word, 0))
.sum();
if (totalWeight >= THRESHOLD) {
// 触发过滤
}
2. 组合条件匹配
实现更复杂的匹配逻辑,如"(A且B)或(C且D)":
boolean condition1 = isMatchAllRequired(matchedWords, "A", "B");
boolean condition2 = isMatchAllRequired(matchedWords, "C", "D");
if (condition1 || condition2) {
// 触发过滤
}
性能优化建议
- 对于频繁使用的联合匹配条件,可以预先将requiredWords转换为Set,避免每次匹配时重复创建
- 如果文本量很大,可以考虑先进行快速筛选,排除明显不符合条件的文本
- 对于固定的联合匹配条件,可以将其封装为独立的策略类,便于复用和管理
总结
通过结合sensitive-word库的基础检测功能和自定义的后处理逻辑,我们可以灵活实现各种复杂的敏感词匹配需求。这种方法既利用了现有库的高效检测能力,又通过上层逻辑满足了特定的业务需求,是一种实用且高效的解决方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
209
221
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
288
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
863
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
136
874