首页
/ 敏感词过滤项目sensitive-word中的英文单词精确匹配功能解析

敏感词过滤项目sensitive-word中的英文单词精确匹配功能解析

2025-06-10 01:29:01作者:齐添朝

在敏感词过滤系统中,精确匹配英文单词是一个常见需求。本文将以开源项目sensitive-word为例,深入解析其如何实现英文单词的精确匹配功能,避免部分字符被误判为敏感词的情况。

问题背景

在文本过滤场景中,我们经常会遇到这样的情况:某些英文单词中包含敏感词片段,但实际上整个单词并不敏感。例如单词"Disburse"中包含"sb"这两个字母,而"sb"可能被配置为敏感词。如果系统不做特殊处理,就会导致"Disburse"被错误地标记为敏感词。

sensitive-word的解决方案

sensitive-word项目在v0.13.0版本中引入了wordResultCondition功能,专门用于解决这类问题。该功能允许开发者对初步匹配到的敏感词进行二次判断,从而实现对英文单词的精确匹配。

核心实现原理

sensitive-word通过WordResultConditions.englishWordMatch()方法实现了英文单词的精确匹配。其工作原理是:

  1. 首先按照常规方式匹配文本中的敏感词
  2. 对每个匹配结果进行二次验证
  3. 验证规则是:只有当匹配到的内容是一个完整的英文单词时,才视为真正的敏感词

使用示例

以下是使用该功能的代码示例:

final String text = "I have a nice day。";

List<String> wordList = SensitiveWordBs.newInstance()
        .wordDeny(new IWordDeny() {
            @Override
            public List<String> deny() {
                return Collections.singletonList("av");
            }
        })
        .wordResultCondition(WordResultConditions.englishWordMatch())
        .init()
        .findAll(text);

在这个例子中,虽然"have"包含"av",但由于"av"不是作为一个独立单词存在,所以不会被标记为敏感词。

技术实现细节

englishWordMatch()方法的实现主要考虑以下几点:

  1. 单词边界判断:通过检查匹配内容前后的字符是否为非字母字符来判断是否是一个完整单词
  2. 大小写处理:确保匹配不受大小写影响
  3. 标点符号处理:正确处理单词后的标点符号情况
  4. 性能优化:在保证准确性的前提下,尽量减少额外的计算开销

应用场景

这种精确匹配功能特别适用于以下场景:

  1. 国际化内容审核:处理包含多种语言的文本
  2. 专业术语保护:避免专业词汇被误判
  3. 名称过滤:处理包含敏感片段的专有名词
  4. 学术内容审核:科学论文中的专业词汇保护

总结

sensitive-word项目通过引入wordResultCondition机制,特别是englishWordMatch()方法,有效解决了英文单词中部分字符被误判为敏感词的问题。这一功能展示了敏感词过滤系统在精确性和灵活性方面的进步,为开发者提供了更加强大和精准的文本过滤工具。

在实际应用中,开发者可以根据具体需求选择是否启用这一功能,或者在更复杂场景下自定义匹配条件,实现更加精细化的文本过滤策略。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133