CVAT 2.30.0版本发布:自动化设置保存与界面定制能力增强
项目简介
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,广泛应用于图像和视频数据的标注工作。作为计算机视觉领域的重要基础设施,CVAT为机器学习模型的训练提供了高质量的数据标注支持。本次发布的2.30.0版本带来了多项实用功能改进和问题修复。
核心功能更新
自动保存与恢复Gamma滤镜设置
在图像处理领域,Gamma校正是一项重要的预处理技术,用于调整图像的亮度分布。CVAT 2.30.0版本实现了Gamma滤镜设置的自动保存与恢复功能,这意味着:
- 用户调整的Gamma值会在会话间持久化保存
- 重新加载页面或项目时,系统会自动恢复上次使用的Gamma设置
- 减少了重复配置的工作量,提升了标注效率
这一改进特别适合需要长时间进行标注工作的用户,避免了因页面刷新或意外关闭导致的设置丢失问题。
客户端设置自动保存机制
本次更新将自动保存机制扩展到了所有客户端设置,包括但不限于:
- 界面布局偏好
- 标注工具配置
- 显示选项设置
这一改进使得用户的工作环境更加个性化,系统能够记住用户的使用习惯,提供更加连贯的标注体验。
服务端API定制能力增强
2.30.0版本为系统管理员提供了更灵活的界面定制选项,特别是对api/server/about端点的增强:
- 企业品牌定制:可以上传自定义logo,体现企业品牌形象
- 登录页个性化:支持设置登录页面的副标题文字
- 系统信息展示:可配置的关于页面内容展示
这些功能对于企业用户特别有价值,可以实现CVAT系统的品牌化部署,增强内部系统的专业性和一致性。
重要问题修复
SDK骨架标签规范修复
在Python SDK中,修复了skeleton_label_spec函数的参数传递问题。现在它能够正确地将所有关键字参数传递给底层的PatchedLabelRequest,确保了骨架标签创建和修改的准确性。
视频标注工作流改进
修复了在基于视频的真实标注(GT)任务中切换帧时可能出现的"无法读取未定义的属性'width'"错误。这一修复:
- 提高了视频标注的稳定性
- 减少了因界面错误导致的工作中断
- 特别有利于长视频序列的标注工作
技术意义与应用价值
CVAT 2.30.0版本的这些改进虽然看似细微,但对于实际工作流程有着显著影响:
- 工作效率提升:自动保存机制减少了重复配置时间
- 用户体验优化:个性化的界面设置让不同用户都能找到最适合自己的工作方式
- 企业部署友好:品牌定制能力使得CVAT可以更好地融入企业IT环境
对于计算机视觉工程师和数据标注团队来说,这些改进使得CVAT成为一个更加成熟、稳定的标注工具选择。特别是自动保存功能的完善,解决了实际工作中常见的痛点,让用户能够更专注于标注质量本身而非工具配置。
随着计算机视觉应用的普及,像CVAT这样的开源工具正在推动整个行业的标准提升。2.30.0版本的发布再次证明了开源社区在解决实际问题方面的敏捷性和有效性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00