Harvester项目中Dell PowerStore存储卷快照功能配置指南
2025-06-13 00:46:45作者:幸俭卉
问题背景
在SUSE Harvester 1.5版本环境中,用户发现当使用Dell PowerStore作为后端存储时,通过Harvester UI界面创建存储卷快照的功能出现异常。然而,通过命令行直接使用CSI快照功能却能够正常工作,这表明CSI驱动本身的功能是正常的,问题出在Harvester平台与CSI驱动的集成配置上。
问题分析
经过深入调查,发现问题的根源在于Harvester平台未能正确识别和配置PowerStore CSI驱动的快照类(VolumeSnapshotClass)。当使用Longhorn作为后端存储时,快照功能可以正常工作,这是因为Harvester对Longhorn有原生支持。但对于第三方CSI驱动如Dell PowerStore,需要额外的配置才能使快照功能正常工作。
解决方案
Harvester提供了一个灵活的配置机制来支持第三方CSI驱动的快照功能。具体配置步骤如下:
- 登录到Harvester管理界面
- 导航到"高级"->"设置"->"csi-driver-config"
- 添加或修改以下JSON配置:
{
"driver.longhorn.io": {
"volumeSnapshotClassName": "longhorn-snapshot",
"backupVolumeSnapshotClassName": "longhorn"
},
"csi-powerstore.dellemc.com": {
"volumeSnapshotClassName": "powerstore-snapshot",
"backupVolumeSnapshotClassName": ""
}
}
其中关键配置项说明:
driver.longhorn.io: Longhorn驱动的配置部分csi-powerstore.dellemc.com: PowerStore驱动的配置部分volumeSnapshotClassName: 指定用于常规快照的VolumeSnapshotClass名称backupVolumeSnapshotClassName: 指定用于备份快照的VolumeSnapshotClass名称(对于PowerStore可以留空)
配置验证
完成上述配置后,建议进行以下验证步骤:
- 在Harvester UI中尝试创建PowerStore存储卷的快照
- 检查快照是否成功创建
- 验证快照是否可以在需要时成功恢复
技术原理
Harvester通过CSI(Container Storage Interface)标准与各种存储后端集成。对于快照功能,Harvester需要知道每个CSI驱动对应的VolumeSnapshotClass资源。当用户通过UI创建快照时,Harvester会根据csi-driver-config中的配置,自动选择正确的VolumeSnapshotClass来创建快照资源。
最佳实践
- 在部署新的CSI驱动时,应提前在csi-driver-config中添加相应的配置
- 定期检查配置是否与CSI驱动的最新版本兼容
- 对于生产环境,建议先在测试环境中验证快照功能的完整工作流程
- 记录和监控快照操作的日志,便于问题排查
总结
通过正确配置csi-driver-config,Harvester可以很好地支持包括Dell PowerStore在内的各种第三方CSI驱动的快照功能。这种灵活的配置机制使得Harvester能够适应多样化的企业存储环境需求,为用户提供统一的存储管理体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885