Altair可视化库实现PCA散点图置信区间椭圆的方法解析
2025-05-24 10:33:18作者:翟江哲Frasier
置信区间椭圆是数据可视化中展现多维数据分布特征的重要工具。在PCA降维分析中,通过置信椭圆能够直观展示不同类别数据的分布范围和方向性。本文将详细介绍如何使用Python的Altair可视化库为PCA散点图添加置信区间椭圆。
置信区间椭圆的核心原理
置信区间椭圆基于多元正态分布假设,通过计算数据点的协方差矩阵特征值和特征向量来确定椭圆的方向和大小。椭圆的长短轴长度与特征值平方根成正比,方向由特征向量决定,通常选择95%置信水平对应的卡方分布临界值作为缩放因子。
Altair实现方案
Altair虽然不直接提供置信椭圆的内置函数,但可以通过组合基础图形元素实现。核心步骤包括:
- 数据预处理:对每个类别分别计算均值向量和协方差矩阵
- 椭圆路径生成:基于特征分解结果计算椭圆轮廓坐标
- 可视化叠加:将椭圆图层叠加到原始散点图上
import altair as alt
import numpy as np
import pandas as pd
from scipy.stats import chi2
def confidence_ellipse(data, group_col, x_col, y_col, level=0.95):
ellipses = []
groups = data[group_col].unique()
for group in groups:
group_data = data[data[group_col] == group]
x = group_data[x_col].values
y = group_data[y_col].values
cov = np.cov(x, y)
lambda_, v = np.linalg.eig(cov)
lambda_ = np.sqrt(lambda_)
theta = np.linspace(0, 2*np.pi, 100)
circle = np.vstack([np.cos(theta), np.sin(theta)]).T
ellipse = circle * lambda_ * np.sqrt(chi2.ppf(level, 2))
ellipse = ellipse.dot(v.T)
ellipse[:, 0] += np.mean(x)
ellipse[:, 1] += np.mean(y)
ellipses.append(pd.DataFrame({
x_col: ellipse[:, 0],
y_col: ellipse[:, 1],
group_col: [group]*100
}))
return pd.concat(ellipses)
完整可视化案例
将置信椭圆与散点图结合使用时,建议采用分层绘制策略:
# 生成示例数据
np.random.seed(42)
data = pd.DataFrame({
'PC1': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(3, 1, 50),
np.random.normal(1, 1, 50)]),
'PC2': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(3, 1, 50),
np.random.normal(1, 2, 50)]),
'Group': ['A']*50 + ['B']*50 + ['C']*50
})
# 计算椭圆路径
ellipses = confidence_ellipse(data, 'Group', 'PC1', 'PC2')
# 创建图表
base = alt.Chart(data).encode(
x='PC1:Q',
y='PC2:Q',
color='Group:N'
)
scatter = base.mark_circle(size=60)
ellipse = alt.Chart(ellipses).mark_line().encode(
x='PC1:Q',
y='PC2:Q',
color='Group:N'
)
(scatter + ellipse).properties(
width=500,
height=400
)
样式优化建议
- 视觉层次:调整椭圆透明度(opacity=0.7)和线宽(strokeWidth=2)以突出散点
- 填充效果:使用mark_area实现填充椭圆,增强视觉区分度
- 交互增强:添加tooltip显示分组统计信息
置信椭圆在生物信息学、社会科学等领域有广泛应用,能够有效揭示数据集的聚类结构和变异方向。通过Altair的灵活组合,开发者可以构建出专业级的统计可视化图表。
提示:对于大规模数据集,建议预先计算椭圆路径以提高渲染性能。在Jupyter环境中,可使用
alt.data_transformers.enable('json')
优化数据处理流程。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~093Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
138
188

React Native鸿蒙化仓库
C++
187
266

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
892
529

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
370
387

Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
20
12

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0