Altair可视化库实现PCA散点图置信区间椭圆的方法解析
2025-05-24 04:02:20作者:翟江哲Frasier
置信区间椭圆是数据可视化中展现多维数据分布特征的重要工具。在PCA降维分析中,通过置信椭圆能够直观展示不同类别数据的分布范围和方向性。本文将详细介绍如何使用Python的Altair可视化库为PCA散点图添加置信区间椭圆。
置信区间椭圆的核心原理
置信区间椭圆基于多元正态分布假设,通过计算数据点的协方差矩阵特征值和特征向量来确定椭圆的方向和大小。椭圆的长短轴长度与特征值平方根成正比,方向由特征向量决定,通常选择95%置信水平对应的卡方分布临界值作为缩放因子。
Altair实现方案
Altair虽然不直接提供置信椭圆的内置函数,但可以通过组合基础图形元素实现。核心步骤包括:
- 数据预处理:对每个类别分别计算均值向量和协方差矩阵
- 椭圆路径生成:基于特征分解结果计算椭圆轮廓坐标
- 可视化叠加:将椭圆图层叠加到原始散点图上
import altair as alt
import numpy as np
import pandas as pd
from scipy.stats import chi2
def confidence_ellipse(data, group_col, x_col, y_col, level=0.95):
ellipses = []
groups = data[group_col].unique()
for group in groups:
group_data = data[data[group_col] == group]
x = group_data[x_col].values
y = group_data[y_col].values
cov = np.cov(x, y)
lambda_, v = np.linalg.eig(cov)
lambda_ = np.sqrt(lambda_)
theta = np.linspace(0, 2*np.pi, 100)
circle = np.vstack([np.cos(theta), np.sin(theta)]).T
ellipse = circle * lambda_ * np.sqrt(chi2.ppf(level, 2))
ellipse = ellipse.dot(v.T)
ellipse[:, 0] += np.mean(x)
ellipse[:, 1] += np.mean(y)
ellipses.append(pd.DataFrame({
x_col: ellipse[:, 0],
y_col: ellipse[:, 1],
group_col: [group]*100
}))
return pd.concat(ellipses)
完整可视化案例
将置信椭圆与散点图结合使用时,建议采用分层绘制策略:
# 生成示例数据
np.random.seed(42)
data = pd.DataFrame({
'PC1': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(3, 1, 50),
np.random.normal(1, 1, 50)]),
'PC2': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(3, 1, 50),
np.random.normal(1, 2, 50)]),
'Group': ['A']*50 + ['B']*50 + ['C']*50
})
# 计算椭圆路径
ellipses = confidence_ellipse(data, 'Group', 'PC1', 'PC2')
# 创建图表
base = alt.Chart(data).encode(
x='PC1:Q',
y='PC2:Q',
color='Group:N'
)
scatter = base.mark_circle(size=60)
ellipse = alt.Chart(ellipses).mark_line().encode(
x='PC1:Q',
y='PC2:Q',
color='Group:N'
)
(scatter + ellipse).properties(
width=500,
height=400
)
样式优化建议
- 视觉层次:调整椭圆透明度(opacity=0.7)和线宽(strokeWidth=2)以突出散点
- 填充效果:使用mark_area实现填充椭圆,增强视觉区分度
- 交互增强:添加tooltip显示分组统计信息
置信椭圆在生物信息学、社会科学等领域有广泛应用,能够有效揭示数据集的聚类结构和变异方向。通过Altair的灵活组合,开发者可以构建出专业级的统计可视化图表。
提示:对于大规模数据集,建议预先计算椭圆路径以提高渲染性能。在Jupyter环境中,可使用
alt.data_transformers.enable('json')优化数据处理流程。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
189
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92