Altair 数据可视化:如何绘制PCA置信区间椭圆
2025-05-24 08:53:23作者:裘晴惠Vivianne
在数据分析和可视化领域,主成分分析(PCA)是一种常用的降维技术,而置信区间椭圆则是展示数据分布特征的重要工具。本文将介绍如何在Python的Altair可视化库中实现PCA散点图并添加置信区间椭圆。
置信区间椭圆的作用
置信区间椭圆能够直观地展示数据点在二维空间中的分布范围和方向。它基于多元正态分布假设,通常用于:
- 展示不同类别数据的分布特征
- 识别数据中的异常点
- 比较不同组别数据的变异程度和相关性
Altair实现方法
Altair本身不直接提供绘制置信区间椭圆的内置函数,但我们可以结合Scipy等科学计算库来实现这一功能。以下是实现步骤:
- 计算椭圆参数:使用Scipy的统计函数计算每个类别的椭圆参数
- 生成椭圆路径:基于计算得到的参数生成椭圆路径点
- 绘制椭圆:使用Altair的mark_line或mark_area绘制椭圆
完整实现代码
import altair as alt
import pandas as pd
import numpy as np
from scipy import stats
# 生成示例数据
np.random.seed(42)
data = pd.DataFrame({
'x': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(5, 1, 50)]),
'y': np.concatenate([np.random.normal(0, 1, 50),
np.random.normal(3, 1, 50)]),
'category': ['A']*50 + ['B']*50
})
# 计算置信椭圆函数
def confidence_ellipse(x, y, level=0.95):
cov = np.cov(x, y)
pearson = cov[0,1]/np.sqrt(cov[0,0]*cov[1,1])
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
theta = np.linspace(0, 2*np.pi, 100)
ellipse_coords = np.column_stack([ell_radius_x*np.cos(theta),
ell_radius_y*np.sin(theta)])
scale = stats.chi2.ppf(level, 2)
ellipse_coords *= np.sqrt(scale)
rotation = np.arctan2(cov[0,1], cov[0,0]-cov[1,1])/2
rot_matrix = np.array([[np.cos(rotation), -np.sin(rotation)],
[np.sin(rotation), np.cos(rotation)]])
ellipse_coords = ellipse_coords.dot(rot_matrix)
ellipse_coords[:,0] += x.mean()
ellipse_coords[:,1] += y.mean()
return pd.DataFrame(ellipse_coords, columns=['x', 'y'])
# 为每个类别生成椭圆数据
ellipses = []
for cat in data['category'].unique():
subset = data[data['category']==cat]
ellipse = confidence_ellipse(subset['x'], subset['y'])
ellipse['category'] = cat
ellipses.append(ellipse)
ellipses = pd.concat(ellipses)
# 创建图表
points = alt.Chart(data).mark_circle(size=60).encode(
x='x:Q',
y='y:Q',
color='category:N'
)
ellipse = alt.Chart(ellipses).mark_line().encode(
x='x:Q',
y='y:Q',
color='category:N',
detail='category:N'
)
chart = points + ellipse
chart.display()
进阶技巧
- 填充椭圆:使用mark_area代替mark_line可以实现填充效果
- 多级置信区间:通过调整level参数可以绘制不同置信水平的椭圆
- 样式定制:可以调整椭圆的透明度、边框粗细等视觉属性
注意事项
- 确保数据符合多元正态分布假设
- 样本量较小时,置信椭圆可能不够准确
- 不同类别的样本量差异较大时,椭圆大小可能不具有直接可比性
通过上述方法,我们可以在Altair中实现与R语言ggplot2类似的PCA置信区间椭圆效果,为数据可视化增添更多专业元素。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.43 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
295
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
354
1.69 K
暂无简介
Dart
544
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
593
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
83
117