首页
/ Deft 项目使用指南

Deft 项目使用指南

2024-09-14 09:48:06作者:袁立春Spencer

项目介绍

Deft 是一个轻量级的、基于 Python 的开源项目,旨在提供一种简单而强大的方式来处理数据流和任务调度。Deft 的设计理念是让开发者能够快速构建和部署数据处理管道,同时保持代码的简洁性和可维护性。Deft 支持多种数据源和处理任务,适用于数据清洗、转换、分析等多种场景。

项目快速启动

安装 Deft

首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Deft:

pip install deft

创建第一个 Deft 任务

以下是一个简单的 Deft 任务示例,它从一个 CSV 文件中读取数据,进行简单的转换,然后将结果写入另一个 CSV 文件。

from deft import Deft, Task

# 定义一个任务
class MyTask(Task):
    def run(self):
        # 读取数据
        data = self.read_csv('input.csv')
        
        # 数据转换
        transformed_data = [row for row in data if int(row['age']) > 18]
        
        # 写入数据
        self.write_csv('output.csv', transformed_data)

# 创建 Deft 实例并运行任务
deft = Deft()
deft.add_task(MyTask())
deft.run()

运行任务

将上述代码保存为 my_task.py,然后在终端中运行:

python my_task.py

应用案例和最佳实践

数据清洗

Deft 可以用于从多个数据源(如 CSV、JSON、数据库等)读取数据,并进行清洗和预处理。例如,你可以使用 Deft 删除重复记录、填充缺失值、标准化数据格式等。

数据转换

Deft 支持多种数据转换操作,如数据聚合、分组、排序等。你可以通过编写自定义的转换函数来实现复杂的数据处理逻辑。

任务调度

Deft 可以与调度工具(如 Airflow、Celery 等)结合使用,实现任务的自动化调度和监控。你可以将 Deft 任务集成到现有的工作流中,确保数据处理任务按时执行。

典型生态项目

Deft + Pandas

Pandas 是一个强大的数据分析库,Deft 可以与 Pandas 无缝集成,提供更高级的数据处理功能。例如,你可以使用 Pandas 进行数据分析和可视化,然后将结果保存到数据库或文件中。

Deft + Airflow

Airflow 是一个流行的任务调度工具,Deft 可以作为 Airflow 的一个任务插件,实现复杂的数据处理工作流。你可以使用 Airflow 来调度 Deft 任务,并监控任务的执行状态。

Deft + SQLAlchemy

SQLAlchemy 是一个强大的 ORM 工具,Deft 可以与 SQLAlchemy 结合使用,实现数据库的读写操作。你可以使用 Deft 从数据库中读取数据,进行处理后,再将结果写回数据库。

通过这些生态项目的结合,Deft 可以扩展其功能,满足更复杂的数据处理需求。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5