Shapash项目中全局与局部特征重要性绘制的计算依赖问题分析
2025-06-28 06:45:33作者:秋泉律Samson
在机器学习模型解释工具Shapash的使用过程中,我们发现了一个值得注意的技术问题:当用户连续调用全局特征重要性图和局部特征重要性图时,绘图流程会出现计算依赖异常。这种现象揭示了Shapash内部计算逻辑的一个潜在设计缺陷,值得开发者深入理解其原理并寻找解决方案。
问题现象描述
在常规使用场景下,Shapash的局部特征重要性图可以独立正常渲染。然而当用户先调用全局特征重要性可视化,再尝试绘制局部特征重要性时,系统会抛出数值计算缺失的错误。这种顺序依赖的行为表明,全局绘图操作可能意外影响了某些中间计算结果的存储状态。
技术背景解析
特征重要性分析是模型解释的核心组成部分。全局特征重要性展示所有特征对模型预测的整体影响程度,而局部特征重要性则聚焦单个样本的特征贡献。在Shapash的实现中,这两类分析本应共享部分基础计算(如SHAP值的计算),但保持各自独立的可视化逻辑。
问题根源探究
通过技术分析,我们推断问题可能源于以下几个方面:
- 计算状态管理不足:全局绘图操作可能修改了某些共享计算状态,但没有为后续的局部分析保留必要数据
- 惰性计算机制缺陷:Shapash可能采用惰性计算策略,但在全局绘图后未正确触发局部分析所需的计算
- 结果缓存策略问题:中间计算结果可能未被适当缓存,导致重复计算时数据丢失
解决方案建议
针对这个问题,我们建议从以下几个方向进行改进:
- 计算过程解耦:确保全局和局部分析的计算路径相互独立,避免状态干扰
- 完善数据持久化:在全局分析后显式保存局部分析所需的基础计算结果
- 增加预处理检查:在局部绘图前验证所需数据是否完备,必要时重新计算
最佳实践建议
对于当前版本的用户,我们建议采取以下临时解决方案:
- 在需要连续绘制两种图表时,显式重新初始化解释器对象
- 考虑调整工作流程,将局部分析放在全局分析之前执行
- 在两次绘图调用之间添加必要的数据验证步骤
这个问题虽然表现为可视化异常,但实质上反映了模型解释工具在计算流程设计上的挑战。通过深入分析这类问题,我们可以更好地理解Shapash等解释工具的内部工作机制,为后续的功能改进和稳定性提升奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19