Shapash项目中全局与局部特征重要性绘制的计算依赖问题分析
2025-06-28 15:23:02作者:秋泉律Samson
在机器学习模型解释工具Shapash的使用过程中,我们发现了一个值得注意的技术问题:当用户连续调用全局特征重要性图和局部特征重要性图时,绘图流程会出现计算依赖异常。这种现象揭示了Shapash内部计算逻辑的一个潜在设计缺陷,值得开发者深入理解其原理并寻找解决方案。
问题现象描述
在常规使用场景下,Shapash的局部特征重要性图可以独立正常渲染。然而当用户先调用全局特征重要性可视化,再尝试绘制局部特征重要性时,系统会抛出数值计算缺失的错误。这种顺序依赖的行为表明,全局绘图操作可能意外影响了某些中间计算结果的存储状态。
技术背景解析
特征重要性分析是模型解释的核心组成部分。全局特征重要性展示所有特征对模型预测的整体影响程度,而局部特征重要性则聚焦单个样本的特征贡献。在Shapash的实现中,这两类分析本应共享部分基础计算(如SHAP值的计算),但保持各自独立的可视化逻辑。
问题根源探究
通过技术分析,我们推断问题可能源于以下几个方面:
- 计算状态管理不足:全局绘图操作可能修改了某些共享计算状态,但没有为后续的局部分析保留必要数据
- 惰性计算机制缺陷:Shapash可能采用惰性计算策略,但在全局绘图后未正确触发局部分析所需的计算
- 结果缓存策略问题:中间计算结果可能未被适当缓存,导致重复计算时数据丢失
解决方案建议
针对这个问题,我们建议从以下几个方向进行改进:
- 计算过程解耦:确保全局和局部分析的计算路径相互独立,避免状态干扰
- 完善数据持久化:在全局分析后显式保存局部分析所需的基础计算结果
- 增加预处理检查:在局部绘图前验证所需数据是否完备,必要时重新计算
最佳实践建议
对于当前版本的用户,我们建议采取以下临时解决方案:
- 在需要连续绘制两种图表时,显式重新初始化解释器对象
- 考虑调整工作流程,将局部分析放在全局分析之前执行
- 在两次绘图调用之间添加必要的数据验证步骤
这个问题虽然表现为可视化异常,但实质上反映了模型解释工具在计算流程设计上的挑战。通过深入分析这类问题,我们可以更好地理解Shapash等解释工具的内部工作机制,为后续的功能改进和稳定性提升奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135