首页
/ Shapash报告中绘图点数的自定义配置解析

Shapash报告中绘图点数的自定义配置解析

2025-06-28 17:39:52作者:韦蓉瑛

背景介绍

Shapash是一个强大的Python库,专为机器学习模型的可解释性而设计。它能够生成直观的报告,帮助数据科学家和业务人员理解模型的行为。在默认配置下,Shapash生成的报告中各类图表(如贡献图)会限制显示200个数据点,这是出于控制报告文件大小的考虑。

问题分析

在实际应用中,200个点的限制有时可能无法充分展示数据特征,特别是当数据具有较多类别或需要更精细的可视化时。例如,在贡献图中,如果特征有大量不同的取值,200点的限制可能导致部分重要模式无法清晰显示。

技术解决方案

Shapash提供了灵活的配置选项,允许用户自定义图表中显示的数据点数量。核心参数是max_points,它控制着图表中呈现的最大点数。

实现方法

在生成报告时,可以通过修改plot相关方法的max_points参数来调整显示点数。例如,对于贡献图:

fig = explainer.plot.contribution_plot(
    feature='your_feature_name',
    label='your_label',
    max_points=500  # 自定义点数
)

参数说明

  • max_points:整数型参数,控制图表中显示的最大数据点数
  • 默认值:200(平衡可视化效果与文件大小)
  • 推荐值:根据数据特征和需求调整,通常在200-1000之间

实际应用建议

  1. 数据量考量:对于大数据集,适当增加点数可以揭示更多细节;小数据集则保持默认即可
  2. 报告大小:点数增加会线性增大报告文件体积,需权衡可视化需求与存储限制
  3. 可视化清晰度:过多点数可能导致图表拥挤,建议通过试验找到最佳平衡点
  4. 特征类型:对于高基数分类特征,需要更多点数才能充分展示各分类的贡献

扩展思考

这一参数调整不仅适用于贡献图,Shapash中的其他可视化组件也大多支持类似的定制。理解这一机制有助于用户根据具体场景优化模型解释报告,使其既能满足分析需求,又保持合理的文件大小。

通过灵活运用这些参数,数据科学家可以创建更加贴合业务需求的可解释性报告,从而更好地支持决策过程。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K
flutter_flutterflutter_flutter
暂无简介
Dart
525
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
286
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
frameworksframeworks
openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0