Spark BigQuery Connector 使用指南
1. 项目介绍
1.1 项目概述
Spark BigQuery Connector 是一个用于 Apache Spark 的开源项目,旨在通过 Spark SQL Data Source API 实现从 Google BigQuery 读取数据到 Spark 的 DataFrame,并将 Spark 的 DataFrame 写回到 BigQuery。该项目利用 BigQuery Storage API 直接从 BigQuery 并行流式传输数据,无需通过 Google Cloud Storage 作为中间媒介,从而提高了数据读取的性能。
1.2 主要功能
- 数据读取:支持从 BigQuery 表和视图中读取数据到 Spark DataFrame。
 - 数据写入:支持将 Spark DataFrame 数据写回到 BigQuery 表中。
 - 过滤和分区:支持列过滤和分区,以优化数据读取性能。
 - 流式处理:支持将 Spark 流数据写入 BigQuery。
 
1.3 项目优势
- 高性能:利用 BigQuery Storage API 直接流式传输数据,减少中间存储环节。
 - 灵活性:支持多种数据格式和分区策略,适应不同的数据处理需求。
 - 易用性:通过 Spark SQL Data Source API 提供简洁的接口,方便集成到现有的 Spark 应用中。
 
2. 项目快速启动
2.1 环境准备
- 确保已安装 Apache Spark。
 - 确保已配置 Google Cloud SDK 并拥有 BigQuery 访问权限。
 
2.2 安装与配置
2.2.1 下载连接器
可以从以下链接下载最新版本的 Spark BigQuery Connector:
gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.41.0.jar
2.2.2 配置 Spark
在 Spark 配置中添加连接器依赖:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
    .config("spark.jars.packages", "com.google.cloud.spark:spark-bigquery-with-dependencies_2.12:0.41.0") \
    .getOrCreate()
2.3 示例代码
2.3.1 读取 BigQuery 数据
# 读取 BigQuery 表数据
df = spark.read.format("bigquery") \
    .option("table", "bigquery-public-data:samples.shakespeare") \
    .load()
df.show()
2.3.2 写入 BigQuery 数据
# 写入数据到 BigQuery 表
df.write.format("bigquery") \
    .option("table", "your_dataset.your_table") \
    .save()
3. 应用案例和最佳实践
3.1 数据分析
通过 Spark BigQuery Connector,可以轻松地将 BigQuery 中的大规模数据加载到 Spark 中进行复杂的数据分析和处理。例如,可以使用 Spark SQL 进行数据聚合、过滤和转换。
3.2 实时数据处理
结合 Spark Streaming,可以将实时数据流写入 BigQuery,实现实时数据分析和监控。例如,处理来自 Kafka 的实时日志数据,并将其存储到 BigQuery 中进行进一步分析。
3.3 数据迁移
在数据迁移场景中,可以使用 Spark BigQuery Connector 将数据从其他数据源(如 HDFS、S3)加载到 Spark,然后写入 BigQuery,实现数据的快速迁移和转换。
4. 典型生态项目
4.1 Apache Spark
Spark BigQuery Connector 是 Apache Spark 生态系统的一部分,通过与 Spark 的紧密集成,提供了高效的数据处理能力。
4.2 Google BigQuery
BigQuery 是 Google Cloud 提供的一种完全托管的数据仓库服务,支持大规模数据存储和分析。Spark BigQuery Connector 使得 Spark 能够直接与 BigQuery 进行数据交互,充分利用 BigQuery 的强大功能。
4.3 Google Cloud Storage
在某些场景下,数据可能需要先写入 Google Cloud Storage,然后再加载到 BigQuery。Spark BigQuery Connector 支持这种间接写入方式,提供了灵活的数据处理流程。
通过以上模块的介绍,您可以快速上手并深入了解 Spark BigQuery Connector 的使用和最佳实践。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00