Spark BigQuery Connector 使用指南
1. 项目介绍
1.1 项目概述
Spark BigQuery Connector 是一个用于 Apache Spark 的开源项目,旨在通过 Spark SQL Data Source API 实现从 Google BigQuery 读取数据到 Spark 的 DataFrame,并将 Spark 的 DataFrame 写回到 BigQuery。该项目利用 BigQuery Storage API 直接从 BigQuery 并行流式传输数据,无需通过 Google Cloud Storage 作为中间媒介,从而提高了数据读取的性能。
1.2 主要功能
- 数据读取:支持从 BigQuery 表和视图中读取数据到 Spark DataFrame。
- 数据写入:支持将 Spark DataFrame 数据写回到 BigQuery 表中。
- 过滤和分区:支持列过滤和分区,以优化数据读取性能。
- 流式处理:支持将 Spark 流数据写入 BigQuery。
1.3 项目优势
- 高性能:利用 BigQuery Storage API 直接流式传输数据,减少中间存储环节。
- 灵活性:支持多种数据格式和分区策略,适应不同的数据处理需求。
- 易用性:通过 Spark SQL Data Source API 提供简洁的接口,方便集成到现有的 Spark 应用中。
2. 项目快速启动
2.1 环境准备
- 确保已安装 Apache Spark。
- 确保已配置 Google Cloud SDK 并拥有 BigQuery 访问权限。
2.2 安装与配置
2.2.1 下载连接器
可以从以下链接下载最新版本的 Spark BigQuery Connector:
gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.41.0.jar
2.2.2 配置 Spark
在 Spark 配置中添加连接器依赖:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.config("spark.jars.packages", "com.google.cloud.spark:spark-bigquery-with-dependencies_2.12:0.41.0") \
.getOrCreate()
2.3 示例代码
2.3.1 读取 BigQuery 数据
# 读取 BigQuery 表数据
df = spark.read.format("bigquery") \
.option("table", "bigquery-public-data:samples.shakespeare") \
.load()
df.show()
2.3.2 写入 BigQuery 数据
# 写入数据到 BigQuery 表
df.write.format("bigquery") \
.option("table", "your_dataset.your_table") \
.save()
3. 应用案例和最佳实践
3.1 数据分析
通过 Spark BigQuery Connector,可以轻松地将 BigQuery 中的大规模数据加载到 Spark 中进行复杂的数据分析和处理。例如,可以使用 Spark SQL 进行数据聚合、过滤和转换。
3.2 实时数据处理
结合 Spark Streaming,可以将实时数据流写入 BigQuery,实现实时数据分析和监控。例如,处理来自 Kafka 的实时日志数据,并将其存储到 BigQuery 中进行进一步分析。
3.3 数据迁移
在数据迁移场景中,可以使用 Spark BigQuery Connector 将数据从其他数据源(如 HDFS、S3)加载到 Spark,然后写入 BigQuery,实现数据的快速迁移和转换。
4. 典型生态项目
4.1 Apache Spark
Spark BigQuery Connector 是 Apache Spark 生态系统的一部分,通过与 Spark 的紧密集成,提供了高效的数据处理能力。
4.2 Google BigQuery
BigQuery 是 Google Cloud 提供的一种完全托管的数据仓库服务,支持大规模数据存储和分析。Spark BigQuery Connector 使得 Spark 能够直接与 BigQuery 进行数据交互,充分利用 BigQuery 的强大功能。
4.3 Google Cloud Storage
在某些场景下,数据可能需要先写入 Google Cloud Storage,然后再加载到 BigQuery。Spark BigQuery Connector 支持这种间接写入方式,提供了灵活的数据处理流程。
通过以上模块的介绍,您可以快速上手并深入了解 Spark BigQuery Connector 的使用和最佳实践。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00