VI_ORB_SLAM2 的安装和配置教程
2025-05-28 23:34:55作者:蔡怀权
项目基础介绍和主要编程语言
VI_ORB_SLAM2 是一个基于 ORB_SLAM2 的视觉惯性 SLAM 系统,支持单目和双目相机。它使用了 ORB 特征点检测和描述算法,结合惯性测量单元(IMU)数据,实现相机位姿估计和稀疏三维重建。项目主要编程语言为 C++。
项目使用的关键技术和框架
- ORB 特征点检测和描述算法:ORB 是一种快速而鲁棒的图像特征检测和描述算法,能够有效地检测图像中的关键点,并为其生成描述子。
- 非线性优化:VI_ORB_SLAM2 使用非线性优化算法来估计相机位姿和三维点坐标,确保位姿估计的准确性和稳定性。
- IMU 数据预处理:项目对 IMU 数据进行预处理,包括时间同步和噪声滤波,以提高定位精度。
- 回环检测和重定位:VI_ORB_SLAM2 能够检测回环,并进行重定位,确保长时间运行的稳定性和准确性。
项目安装和配置准备工作
- 操作系统:Ubuntu 12.04、14.04 或 16.04
- 依赖库:Ceres Solver、Eigen3、OpenCV、Pangolin、DBoW2、g2o、glog、gflags
- 编译器:CMake、GCC
项目安装和配置详细步骤
-
安装依赖库:
- 安装 CMake:
sudo apt-get install cmake - 安装 Eigen3:
sudo apt-get install libeigen3-dev - 安装 OpenCV:
sudo apt-get install libopencv-dev - 安装 Pangolin:
sudo apt-get install libpangolin-dev - 安装 DBoW2:
sudo apt-get install libdlib-dev - 安装 g2o:
sudo apt-get install libg2o - 安装 glog 和 gflags:
sudo apt-get install libglog-dev libgflags-dev
- 安装 CMake:
-
克隆项目:
- 在终端中输入以下命令克隆项目:
git clone https://github.com/SilenceOverflow/VI_ORB_SLAM2.git VI_ORB_SLAM2
- 在终端中输入以下命令克隆项目:
-
编译项目:
- 进入项目目录:
cd VI_ORB_SLAM2 - 赋予 build.sh 脚本执行权限:
chmod +x build.sh - 运行 build.sh 脚本编译项目:
./build.sh
- 进入项目目录:
-
测试项目:
- 在终端中运行以下命令测试项目:
- 单目 VI ORB-SLAM:
./Examples/Monocular/mono_euroc_VI Vocabulary/ORBvoc.bin Examples/Monocular/EuRoC_VI.yaml PATH_TO_EuRoC/MH_01_easy/mav0/imu0/data.csv PATH_TO_EuRoC/MH_01_easy/mav0/cam0/data.csv PATH_TO_EuRoC/MH_01_easy/mav0/cam0/data MH_01_easy - 双目 VI ORB-SLAM:
./Examples/Stereo/stereo_euroc_VI Vocabulary/ORBvoc.bin Examples/Stereo/EuRoC_VI.yaml PATH_TO_EuRoC/MH_01_easy/mav0/imu0/data.csv PATH_TO_EuRoC/MH_01_easy/mav0/cam0/data.csv PATH_TO_EuRoC/MH_01_easy/mav0/cam0/data PATH_TO_EuRoC/MH_01_easy/mav0/cam1/data MH_01_easy
- 单目 VI ORB-SLAM:
- 在终端中运行以下命令测试项目:
-
查看结果:
- 测试结果将存储在
tmp_result/mono_VI/(单目)和tmp_result/stereo_VI/(双目)文件夹中,包括相机位姿、IMU 偏差和比例因子等信息。
- 测试结果将存储在
-
可视化结果:
- 在
visualizations文件夹中查看可视化结果。
- 在
通过以上步骤,您就可以成功安装和配置 VI_ORB_SLAM2 项目,并开始进行视觉惯性 SLAM 实验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355