Strawberry GraphQL 0.272.0版本发布:新增禁用内省查询扩展
项目简介
Strawberry是一个基于Python的GraphQL库,它提供了简洁的API来构建GraphQL服务。GraphQL是一种用于API的查询语言,允许客户端精确地请求所需的数据,避免了传统REST API中常见的数据过度获取或不足获取的问题。Strawberry通过Python类型注解和装饰器,让开发者能够以直观的方式定义GraphQL模式。
版本亮点
Strawberry 0.272.0版本引入了一个重要的新特性:DisableIntrospection
扩展。这个扩展专门用于禁用GraphQL的内省查询功能。
什么是内省查询?
在GraphQL中,内省查询(Introspection Query)是一种特殊的查询,允许客户端获取GraphQL模式本身的详细信息。例如,通过内省查询,客户端可以了解:
- 可用的类型和字段
- 字段的参数和返回类型
- 类型之间的关系
- 指令和其他元信息
内省查询是GraphQL的一个重要特性,它为开发者工具(如GraphiQL)提供了必要的信息,使得开发者能够探索和理解API的结构。
为什么需要禁用内省查询?
虽然内省查询在开发环境中非常有用,但在生产环境中,出于安全考虑,可能需要禁用这一功能:
- 减少信息暴露:内省查询会暴露API的完整结构,这可能为潜在攻击者提供有价值的信息
- 性能优化:内省查询通常返回大量数据,禁用它们可以减少服务器负载
- 最小权限原则:生产环境通常只需要执行业务查询,不需要模式探索功能
新扩展的使用方式
在0.272.0版本之前,禁用内省查询需要通过AddValidationRules
扩展来实现,这需要开发者编写额外的验证规则代码。新版本提供的DisableIntrospection
扩展简化了这一过程:
import strawberry
from strawberry.extensions import DisableIntrospection
@strawberry.type
class Query:
@strawberry.field
def hello(self) -> str:
return "Hello, world!"
schema = strawberry.Schema(
Query,
extensions=[
DisableIntrospection(),
],
)
通过这种方式,开发者只需简单地将扩展添加到Schema配置中,即可禁用所有内省查询功能。
技术实现分析
DisableIntrospection
扩展的实现基于GraphQL的验证阶段。当客户端发送查询时,Strawberry会先进行验证,检查查询是否包含内省字段(如__schema
或__type
)。如果检测到这些字段,扩展会返回错误响应,阻止查询执行。
这种实现方式有以下几个特点:
- 早期拦截:在查询执行前就进行拦截,避免不必要的处理
- 精确匹配:能够准确识别各种形式的内省查询
- 可配置性:未来可以扩展为允许部分内省功能或基于条件的禁用
最佳实践建议
- 开发与生产环境分离:建议在开发环境中保留内省功能,方便API探索;在生产环境中禁用
- 结合其他安全措施:禁用内省只是安全策略的一部分,还应考虑认证、授权、限流等措施
- 文档补充:禁用内省后,确保提供完整的API文档,弥补开发者无法通过内省获取信息的不足
- 渐进式部署:在大规模应用中,可以先在部分节点启用,观察影响后再全面部署
总结
Strawberry 0.272.0版本的DisableIntrospection
扩展为GraphQL API的安全管理提供了更便捷的工具。这一改进体现了Strawberry项目对开发者体验和安全性的持续关注。通过简化常用功能的实现方式,Strawberry让开发者能够更专注于业务逻辑的实现,同时保持对API安全性的控制。
对于正在使用或考虑使用Strawberry构建GraphQL服务的团队,建议评估生产环境中内省查询的必要性,并根据实际情况决定是否采用这一新特性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









