Strawberry GraphQL 0.263.0版本发布:支持Pydantic计算字段集成
Strawberry GraphQL是一个基于Python的类型安全GraphQL服务器实现,它充分利用了Python的类型注解功能,为开发者提供了构建GraphQL API的优雅方式。该项目与Python生态中的其他流行库如Pydantic深度集成,使得开发者能够轻松地在GraphQL和Python类型系统之间进行转换。
在最新的0.263.0版本中,Strawberry GraphQL引入了一个重要特性:支持在Pydantic模型转换时包含计算字段(computed fields)。这一增强功能进一步提升了Strawberry与Pydantic的互操作性,为开发者提供了更灵活的数据模型定义方式。
计算字段集成详解
计算字段是Pydantic v2中引入的一个强大特性,它允许开发者在数据模型中定义基于其他字段计算得出的属性。这些字段不会被直接存储,而是在访问时动态计算。在之前的Strawberry版本中,当使用@strawberry.experimental.pydantic.type装饰器将Pydantic模型转换为GraphQL类型时,这些计算字段默认不会被包含在内。
新版本通过include_computed参数解决了这个问题。开发者现在可以显式地指定是否要将Pydantic模型中的计算字段包含在生成的GraphQL类型中。这在API设计中非常有用,特别是当你需要暴露一些派生数据或聚合指标时。
使用示例
让我们通过一个具体的例子来说明这个新特性的使用方法:
import pydantic
from pydantic import computed_field
import strawberry
class UserModel(pydantic.BaseModel):
age: int
@computed_field
@property
def next_age(self) -> int:
return self.age + 1
@strawberry.experimental.pydantic.type(
UserModel,
all_fields=True,
include_computed=True # 新增参数,启用计算字段包含
)
class User:
pass
在这个例子中,我们定义了一个简单的Pydantic模型UserModel,它有一个基本字段age和一个计算字段next_age,后者返回用户的下一个年龄。通过设置include_computed=True,next_age字段现在会被自动包含在生成的GraphQL类型中,客户端可以像查询普通字段一样查询它。
技术实现分析
从技术实现角度看,这一特性涉及到了Strawberry类型系统与Pydantic类型系统的深度集成。计算字段在Pydantic中是通过@computed_field装饰器标记的特殊属性,Strawberry现在能够识别这些标记,并在类型转换过程中正确处理它们。
值得注意的是,计算字段的包含是可选行为,默认情况下不会自动包含,这保持了向后兼容性。开发者需要显式地通过include_computed参数来启用这一功能。
应用场景
这一新特性在实际开发中有多种应用场景:
- 派生数据展示:比如在电商系统中,可以根据基础价格字段计算含税价格、折扣价等
- 状态聚合:根据多个字段的状态计算出一个综合状态指标
- 格式化输出:将原始数据格式化为更友好的展示形式
- 业务逻辑封装:将一些常用的业务计算逻辑封装在模型层面
总结
Strawberry GraphQL 0.263.0版本对Pydantic计算字段的支持,进一步丰富了其类型系统的表达能力,使得开发者能够更自然地在GraphQL API中暴露复杂的数据模型。这一改进体现了Strawberry项目对Python生态系统的深度集成能力,以及对开发者体验的持续关注。
对于已经在使用Strawberry和Pydantic的开发者来说,这一特性提供了更多的灵活性和表达力;对于新用户来说,它降低了在GraphQL API中暴露复杂数据模型的难度。随着这类改进的不断积累,Strawberry GraphQL正日益成为Python生态中构建类型安全GraphQL API的首选方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00