DynamicData中Sample与TransformWithInlineUpdate的兼容性问题解析
背景介绍
DynamicData是一个强大的.NET实时集合管理库,它为处理动态数据集提供了丰富的操作符和功能。在实际开发中,我们经常需要对数据流进行采样(Sample)操作以减少UI更新频率,同时使用TransformWithInlineUpdate来保持数据转换时的状态一致性。
问题现象
开发者在使用DynamicData时发现,当同时使用SourceCache的Sample和TransformWithInlineUpdate操作符时,系统会抛出DynamicData.MissingKeyException异常,提示"1 is not found"。而单独使用Transform操作符则工作正常。
技术分析
根本原因
DynamicData的核心设计理念是要求变更集(ChangeSet)必须按顺序完整捕获所有变更,这样才能准确判断每个操作是添加、更新还是删除。而标准的Rx Sample操作符会跳过部分变更,这违反了DynamicData对变更集完整性的要求。
替代方案
DynamicData提供了Batch操作符作为替代方案。与Sample不同,Batch会在指定时间窗口内缓冲所有变更,然后将这些变更作为一个批处理变更集发出。这种方式保持了变更集的完整性,同时也能达到减少UI更新频率的效果。
性能考量
虽然Batch操作符会在一段时间后发送所有缓冲的变更(而不是像Sample那样只发送最后一个),但DynamicData内部会对这些变更进行优化处理。对于UI控件如DataGrid,这种批处理方式通常已经足够高效。
最佳实践
对于需要"取最后一个变更"的场景,可以考虑以下实现方式:
- 使用Batch替代Sample,虽然会发送所有变更但保持了数据一致性
- 在Batch之后添加自定义操作符来筛选需要的变更
- 考虑使用DynamicData提供的其他节流操作符如Throttle
结论
理解DynamicData内部对变更集完整性的要求非常重要。虽然标准Rx操作符在某些场景下可以直接使用,但在涉及状态维护的操作(如TransformWithInlineUpdate)时,必须使用DynamicData专门设计的操作符来保证数据一致性。Batch操作符在这种情况下提供了既保持性能又不违反数据完整性的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00