HuggingFace Datasets远程数据集增量更新方案解析
2025-05-11 11:59:31作者:何将鹤
在机器学习项目中,我们经常需要向现有的数据集添加新样本。HuggingFace Datasets库作为处理数据集的重要工具,提供了多种数据操作方式。本文将深入探讨如何高效地向远程Hub数据集添加新数据,而无需下载整个数据集到本地。
传统方法的局限性
传统上,要向远程数据集添加新样本,开发者通常需要:
- 下载整个数据集到本地
- 在本地合并新数据
- 重新上传整个更新后的数据集
这种方法存在明显缺点:
- 网络带宽浪费:每次更新都需要下载整个数据集
- 处理效率低:对小规模增量更新来说处理开销过大
- 存储压力:本地需要保存完整数据集副本
高效增量更新方案
HuggingFace生态系统提供了更优雅的解决方案,核心思路是将新数据直接转换为Parquet格式文件并上传。
技术实现步骤
- 准备新数据:
from datasets import Dataset
import pandas as pd
new_data = {
"column_1": ["value1", "value2"],
"column_2": ["value3", "value4"],
}
df_new = pd.DataFrame(new_data)
dataset_new = Dataset.from_pandas(df_new)
- 转换为Parquet格式:
dataset_new.to_parquet("new_data.parquet")
- 上传到Hub:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj="new_data.parquet",
path_in_repo="data/new_data.parquet",
repo_id="username/dataset_name",
repo_type="dataset"
)
最佳实践建议
- 批量处理:避免单个样本单独上传,积累一定量后批量处理
- 命名规范:采用递增的序号命名Parquet文件(如0000.parquet、0001.parquet等)
- 数据验证:确保新数据与现有数据集schema兼容
- 版本控制:考虑使用数据集分支或标签管理不同版本
技术原理剖析
Parquet作为列式存储格式,具有以下优势:
- 高效压缩:显著减少存储空间和传输带宽
- 高性能查询:特别适合机器学习场景的数据读取
- 模式演化:支持在不破坏现有数据的情况下添加新列
HuggingFace Hub的后端设计原生支持这种分块上传的方式,多个Parquet文件在加载时会自动合并为逻辑上的单一数据集。
扩展应用场景
这种增量更新方法特别适合:
- 持续学习系统:定期添加新训练样本
- 众包数据收集:分布式收集数据后集中存储
- 实验数据管理:不同实验阶段产生的数据分批存储
通过本文介绍的方法,开发者可以更高效地管理远程数据集,避免不必要的数据传输和处理开销,提升机器学习工作流的整体效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874