HuggingFace Datasets远程数据集增量更新方案解析
2025-05-11 11:20:45作者:何将鹤
在机器学习项目中,我们经常需要向现有的数据集添加新样本。HuggingFace Datasets库作为处理数据集的重要工具,提供了多种数据操作方式。本文将深入探讨如何高效地向远程Hub数据集添加新数据,而无需下载整个数据集到本地。
传统方法的局限性
传统上,要向远程数据集添加新样本,开发者通常需要:
- 下载整个数据集到本地
- 在本地合并新数据
- 重新上传整个更新后的数据集
这种方法存在明显缺点:
- 网络带宽浪费:每次更新都需要下载整个数据集
- 处理效率低:对小规模增量更新来说处理开销过大
- 存储压力:本地需要保存完整数据集副本
高效增量更新方案
HuggingFace生态系统提供了更优雅的解决方案,核心思路是将新数据直接转换为Parquet格式文件并上传。
技术实现步骤
- 准备新数据:
from datasets import Dataset
import pandas as pd
new_data = {
"column_1": ["value1", "value2"],
"column_2": ["value3", "value4"],
}
df_new = pd.DataFrame(new_data)
dataset_new = Dataset.from_pandas(df_new)
- 转换为Parquet格式:
dataset_new.to_parquet("new_data.parquet")
- 上传到Hub:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj="new_data.parquet",
path_in_repo="data/new_data.parquet",
repo_id="username/dataset_name",
repo_type="dataset"
)
最佳实践建议
- 批量处理:避免单个样本单独上传,积累一定量后批量处理
- 命名规范:采用递增的序号命名Parquet文件(如0000.parquet、0001.parquet等)
- 数据验证:确保新数据与现有数据集schema兼容
- 版本控制:考虑使用数据集分支或标签管理不同版本
技术原理剖析
Parquet作为列式存储格式,具有以下优势:
- 高效压缩:显著减少存储空间和传输带宽
- 高性能查询:特别适合机器学习场景的数据读取
- 模式演化:支持在不破坏现有数据的情况下添加新列
HuggingFace Hub的后端设计原生支持这种分块上传的方式,多个Parquet文件在加载时会自动合并为逻辑上的单一数据集。
扩展应用场景
这种增量更新方法特别适合:
- 持续学习系统:定期添加新训练样本
- 众包数据收集:分布式收集数据后集中存储
- 实验数据管理:不同实验阶段产生的数据分批存储
通过本文介绍的方法,开发者可以更高效地管理远程数据集,避免不必要的数据传输和处理开销,提升机器学习工作流的整体效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881