Apache SkyWalking BanyanDB Helm 部署指南
项目目录结构及介绍
Apache SkyWalking BanyanDB 的 Helm 图表仓库位于 https://github.com/apache/skywalking-banyandb-helm,其目录结构设计用于简化在 Kubernetes 环境中部署和管理 BanyanDB 的过程。下面是关键的目录和文件及其简要说明:
-
Chart.yaml: Helm 图表元数据文件,包含图表版本、名称、依赖等信息。
-
values.yaml: 默认配置文件,列出所有可配置项及其默认值。这是自定义部署的关键。
-
templates/: 包含Kubernetes资源模板(如Deployment, Service等),Helm使用这些模板创建实际的集群对象。
-
charts/: 如果项目有子图表的话,将会存放在此处,但对于BanyanDB Helm Chart,这个目录可能不存在或为空,因为当前上下文没有提及子图表。
-
NOTICE: 许可和版权声明文件。
-
README.md: 项目快速入门和基本说明。
-
LICENSE: 使用的Apache 2.0许可证文件。
-
Makefile: 用于自动化构建和测试流程的Makefile,对于开发和维护者而言重要。
-
gitignore: 指定Git应忽略哪些文件或目录。
项目的启动文件介绍
在本项目中,并没有直接所谓的“启动文件”,但关键的启动逻辑是由Helm图表通过其模板文件 (templates/*) 自动化处理的。主要的“启动”操作是执行Helm命令来部署到Kubernetes环境。例如,使用以下命令可以基于默认配置安装BanyanDB:
helm repo add apache-skywalking https://apache.github.io/skywalking-oap-server/helm/
helm install banyandb apache-skywalking/skywalking-banyandb
或者,如果你想从项目的master分支安装最新开发版本,可以按照仓库中的指示进行:
export REPO=chart
git clone https://github.com/apache/skywalking-banyandb-helm
cd skywalking-banyandb-helm
helm install banyandb ${REPO}
项目的配置文件介绍
values.yaml
values.yaml 文件是BanyanDB Helm部署的核心,它允许用户自定义几乎所有的部署参数。一些关键配置项可能包括:
- image: BanyanDB容器镜像的地址和标签,比如版本号。
- replicas: 控制副本数,决定运行实例的数量。
- service: 定义服务类型、端口等,控制如何暴露服务。
- resources: 设置Pod的资源请求和限制,影响性能和资源利用率。
- storageClass (如果适用): 对于持久化存储的需求,指定存储类名。
- env: 可以设置环境变量,进行更细粒度的配置调整。
为了实现特定的部署需求,用户应该编辑此文件来覆盖默认配置。每个配置项通常都有注释来解释其作用,确保在修改前仔细阅读这些说明。
以上就是关于Apache SkyWalking BanyanDB的Helm部署的基本结构介绍、启动概览以及配置文件解析。了解并熟练掌握这些内容将帮助您顺利部署和管理BanyanDB。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00