Apache SkyWalking BanyanDB Helm 部署指南
项目目录结构及介绍
Apache SkyWalking BanyanDB 的 Helm 图表仓库位于 https://github.com/apache/skywalking-banyandb-helm,其目录结构设计用于简化在 Kubernetes 环境中部署和管理 BanyanDB 的过程。下面是关键的目录和文件及其简要说明:
-
Chart.yaml: Helm 图表元数据文件,包含图表版本、名称、依赖等信息。
-
values.yaml: 默认配置文件,列出所有可配置项及其默认值。这是自定义部署的关键。
-
templates/: 包含Kubernetes资源模板(如Deployment, Service等),Helm使用这些模板创建实际的集群对象。
-
charts/: 如果项目有子图表的话,将会存放在此处,但对于BanyanDB Helm Chart,这个目录可能不存在或为空,因为当前上下文没有提及子图表。
-
NOTICE: 许可和版权声明文件。
-
README.md: 项目快速入门和基本说明。
-
LICENSE: 使用的Apache 2.0许可证文件。
-
Makefile: 用于自动化构建和测试流程的Makefile,对于开发和维护者而言重要。
-
gitignore: 指定Git应忽略哪些文件或目录。
项目的启动文件介绍
在本项目中,并没有直接所谓的“启动文件”,但关键的启动逻辑是由Helm图表通过其模板文件 (templates/*
) 自动化处理的。主要的“启动”操作是执行Helm命令来部署到Kubernetes环境。例如,使用以下命令可以基于默认配置安装BanyanDB:
helm repo add apache-skywalking https://apache.github.io/skywalking-oap-server/helm/
helm install banyandb apache-skywalking/skywalking-banyandb
或者,如果你想从项目的master分支安装最新开发版本,可以按照仓库中的指示进行:
export REPO=chart
git clone https://github.com/apache/skywalking-banyandb-helm
cd skywalking-banyandb-helm
helm install banyandb ${REPO}
项目的配置文件介绍
values.yaml
values.yaml
文件是BanyanDB Helm部署的核心,它允许用户自定义几乎所有的部署参数。一些关键配置项可能包括:
- image: BanyanDB容器镜像的地址和标签,比如版本号。
- replicas: 控制副本数,决定运行实例的数量。
- service: 定义服务类型、端口等,控制如何暴露服务。
- resources: 设置Pod的资源请求和限制,影响性能和资源利用率。
- storageClass (如果适用): 对于持久化存储的需求,指定存储类名。
- env: 可以设置环境变量,进行更细粒度的配置调整。
为了实现特定的部署需求,用户应该编辑此文件来覆盖默认配置。每个配置项通常都有注释来解释其作用,确保在修改前仔细阅读这些说明。
以上就是关于Apache SkyWalking BanyanDB的Helm部署的基本结构介绍、启动概览以及配置文件解析。了解并熟练掌握这些内容将帮助您顺利部署和管理BanyanDB。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









