推荐项目:Object Detection Knowledge Distillation(ODKD)——智能瘦身,高效目标检测新选择
2024-08-27 23:18:35作者:蔡丛锟
项目介绍
在深度学习的浩瀚星空中,目标检测一直是计算机视觉领域中的璀璨明珠。然而,高精度模型往往伴随着资源消耗巨大,这对于设备有限的应用场景来说无疑是个挑战。ODKD(Object Detection Knowledge Distillation)开源项目正是为了解决这一痛点而来。该项目致力于通过知识蒸馏技术,将大型复杂模型的智慧传授给轻量级模型,使得小模型也能实现高效精准的目标检测,让AI普及之路更加平顺。
项目技术分析
ODKD基于当前流行的SSD(Single Shot MultiBox Detector)和Yolov5架构进行知识蒸馏的探索,首先是在【mbv2-lite】分支中实现陈广等人的研究工作,即《利用知识蒸馏学习高效的目标检测模型》。这个版本不仅优化了代码结构,还大量采用PyTorch API以提高代码的可读性和执行效率。通过这种方式,开发者能够更轻松地理解和上手,即便是初学者也能迅速入门。
系统架构设计图直观展现了其内部的工作流程(见ODKD架构图),清晰展示了从训练到知识转移的每一个环节,体现了项目对透明度和易用性的重视。
项目及技术应用场景
ODKD技术尤其适合那些对计算资源有限制的场景,如嵌入式设备、移动应用或边缘计算环境。无论是实时监控系统的轻量化升级,还是无人机、智能摄像头中的目标识别任务,ODKD都能提供一个性能与效率兼顾的解决方案。例如,在智慧城市构建中,使用ODKD训练出的模型可以有效减少服务器负担,同时保证城市安全监测的准确性。
项目特点
- 轻量化与效能并重:通过知识蒸馏技术使轻量级模型获得接近大模型的检测效果。
- 易于上手:即使是新手,也能够快速掌握并部署,项目提供了详尽的入门指南。
- 模块化设计:模块化的代码结构便于定制和扩展,支持灵活配置。
- 持续进化:尽管目前处于Beta阶段,但开发团队承诺发布正式版,并已规划包括评估模块、日志管理、COCO数据集支持以及Yolov5蒸馏在内的未来更新。
使用方式
只需简单几步,您就可以开始您的高效目标检测之旅:
$ python setup.py install --user
$ odkd-train ./training_config.yml -t
# 或者分布式训练
$ odkd-train training_config.yml
$ python -m torch.distributed
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19