DCRN 项目使用教程
2024-08-24 09:50:07作者:伍霜盼Ellen
项目介绍
DCRN(Dual Correlation Reduction Network)是一个用于深度图聚类的开源项目,旨在揭示图的潜在结构并将节点划分为不同的组。该项目通过减少信息在双层级的相关性,提高了节点表示的判别能力。此外,为了缓解由于GCN(图卷积网络)过度平滑导致的表示崩溃问题,DCRN引入了一个传播正则化项,使得网络能够在浅层结构中获取长距离信息。
项目快速启动
环境准备
确保你的开发环境满足以下要求:
- Python 3.8.5
- NVIDIA 3090 GPU
- 安装所需的Python包(具体包信息见
requirements.txt)
克隆项目
git clone https://github.com/yueliu1999/DCRN.git
cd DCRN
安装依赖
pip install -r requirements.txt
运行示例
以下是一个简单的运行示例,展示了如何使用DCRN进行图聚类:
import DCRN
# 初始化DCRN模型
model = DCRN.DCRN()
# 加载数据
data = DCRN.load_data('path_to_your_data')
# 训练模型
model.train(data)
# 进行聚类
clusters = model.cluster(data)
print(clusters)
应用案例和最佳实践
应用案例
DCRN在多个领域都有广泛的应用,例如社交网络分析、生物信息学中的蛋白质相互作用网络分析等。通过使用DCRN,研究人员能够更有效地发现网络中的社区结构,从而对网络的特性有更深入的理解。
最佳实践
- 数据预处理:确保输入数据的质量,进行必要的预处理步骤,如去除噪声、标准化等。
- 参数调优:根据具体应用调整模型参数,如学习率、批大小等,以达到最佳性能。
- 结果评估:使用合适的评估指标(如NMI、ARI等)来评估聚类结果的质量。
典型生态项目
DCRN作为一个开源项目,与其他图分析和机器学习项目形成了良好的生态系统。以下是一些典型的生态项目:
- PyTorch Geometric:一个用于图神经网络的PyTorch库,与DCRN结合使用可以进一步增强图分析的能力。
- NetworkX:一个用于复杂网络分析的Python库,可以与DCRN结合使用来进行更复杂的图操作和分析。
- Scikit-learn:一个机器学习库,提供了多种评估聚类结果的工具和方法。
通过这些生态项目的结合使用,可以进一步扩展DCRN的功能和应用范围。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134