Visual-RFT项目训练ImageNet100时的显存优化实践
2025-07-10 03:07:23作者:庞眉杨Will
问题背景
在使用Visual-RFT项目进行ImageNet100分类任务训练时,用户遇到了显存逐渐增加最终导致内存溢出的问题。该问题在训练初期表现正常,但随着训练步数的增加,显存占用持续增长,最终在7张24GB显存的GPU环境下出现OOM(Out Of Memory)错误。
问题分析
从技术角度看,这类显存逐渐增长的问题通常与以下几个因素有关:
- 图像分辨率过高:原始ImageNet图像尺寸较大,直接输入模型会导致显存占用过高
- 梯度累积设置:虽然梯度累积可以减少显存使用,但不当的设置可能适得其反
- 内存泄漏:训练过程中可能存在未被释放的临时变量
- 数据预处理不足:缺乏适当的图像尺寸调整和归一化处理
解决方案
经过实践验证,最有效的解决方案是对输入图像进行适当的尺寸调整:
- 图像尺寸标准化:将输入图像统一调整为224×224像素,这是计算机视觉任务中常用的标准尺寸
- 预处理优化:在数据加载阶段加入适当的图像预处理流程,包括归一化和标准化操作
技术实现细节
图像预处理改进
在构建数据集时,应当加入以下预处理步骤:
from torchvision import transforms
# 标准图像预处理流程
transform = transforms.Compose([
transforms.Resize(256), # 先将短边缩放到256
transforms.CenterCrop(224), # 中心裁剪到224×224
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet标准归一化
std=[0.229, 0.224, 0.225])
])
训练参数优化
除了图像预处理外,还可以通过调整训练参数来优化显存使用:
- 适当降低
per_device_train_batch_size值 - 调整
gradient_accumulation_steps参数 - 确保启用了
gradient_checkpointing(梯度检查点)技术 - 使用混合精度训练(
bf16或fp16)
实践建议
对于类似的大规模视觉任务训练,建议采取以下最佳实践:
- 从小规模开始:先用小批量数据验证训练流程
- 监控显存使用:使用
nvidia-smi或PyTorch内存分析工具实时监控 - 渐进式调整:逐步增加批量大小,找到显存和训练效率的最佳平衡点
- 利用混合精度:充分利用现代GPU的混合精度计算能力
结论
通过合理的图像预处理和训练参数调整,可以有效解决Visual-RFT项目在ImageNet100训练过程中的显存溢出问题。这一经验同样适用于其他大规模视觉任务的训练场景,关键在于找到计算资源与模型性能之间的最佳平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250