Visual-RFT项目中的训练数据转换与GPU内存优化实践
背景介绍
Visual-RFT是一个基于Qwen2-VL模型进行视觉指令微调的开源项目。在实际训练过程中,开发者们遇到了两个主要技术挑战:训练数据格式转换问题和GPU内存不足问题。本文将详细分析这两个问题的成因及解决方案。
训练数据格式转换问题
问题现象
项目从Hugging Face下载的训练数据默认采用Parquet格式存储,而训练脚本期望加载的是Hugging Face DatasetDict格式。直接加载会导致以下错误:
FileNotFoundError: No such file: 'share_data/ViRFT_COCO_base65/dataset_dict.json'.
Expected to load a `DatasetDict` object, but provided path is not a `DatasetDict`.
解决方案
原始代码使用DatasetDict.load_from_disk()方法加载数据,这需要数据已保存为DatasetDict格式。正确的做法是使用Hugging Face的load_dataset函数直接加载Parquet文件:
from datasets import load_dataset
dataset = load_dataset(script_args.dataset_name)
这一修改利用了Hugging Face数据集库的自动格式识别能力,能够正确处理Parquet格式的数据文件。
GPU内存优化问题
问题现象
即使用户使用8块24GB显存的GPU,在启用DeepSpeed Zero3 Offload配置的情况下,仍然会遇到内存不足的问题。具体表现为:
RuntimeError: split_with_sizes expects split_sizes to sum exactly to 1 (input tensor's size at dimension 0),
but got split_sizes=[1656]
问题分析
这个问题源于GRPO训练过程中生成阶段的内存消耗。默认配置下,num_generations参数设置为8,意味着每个训练样本需要生成8个候选输出进行比较,这对显存造成了极大压力。
解决方案
-
修改模型输入处理: 在
grpo_trainer.py中修改两处代码:# 移除不必要的维度扩展 # prompt_inputs['pixel_values'] = prompt_inputs['pixel_values'][None] # 优化像素值重复方式 pixel_values = prompt_inputs["pixel_values"].repeat(self.num_generations, 1) -
调整生成参数: 将
--num_generations从默认的8降低到2-4之间,平衡训练效果和内存消耗。 -
DeepSpeed配置优化: 使用
zero3_offload.json配置,将优化器状态和参数卸载到CPU:"zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true } }
实际训练效果
采用上述优化后,在8×24GB GPU配置下:
- 每步训练时间约19秒
- 所有GPU显存接近满载
- 训练过程稳定,各项指标正常收敛
- 典型训练日志输出:
{'loss': 0.0038, 'grad_norm': 4.39, 'learning_rate': 9.87e-7, 'completion_length': 53.38, 'reward': 1.634, 'reward_std': 0.391}
经验总结
- 对于大型视觉语言模型的微调,数据加载方式需要特别注意格式兼容性
- GRPO训练方法虽然有效,但对显存需求极高,需要合理调整生成参数
- DeepSpeed的Zero3 Offload技术能显著降低显存需求,是训练大模型的必备工具
- 在实际部署时,需要在训练效果和资源消耗之间找到平衡点
这些实践经验不仅适用于Visual-RFT项目,对于其他类似规模的视觉语言模型训练也具有参考价值。开发者可以根据自身硬件条件,灵活调整相关参数以获得最佳训练效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00