使用Diffrax高效并行求解不同参数的ODE系统
2025-07-10 14:34:51作者:范靓好Udolf
Diffrax作为JAX生态中的微分方程求解库,提供了强大的并行计算能力。本文将介绍如何利用Diffrax的向量化功能,高效地同时求解多个参数不同的常微分方程(ODE)系统。
问题背景
在实际科学计算中,我们经常遇到需要同时求解大量ODE系统的情况。这些系统可能具有不同的初始条件、不同的参数,甚至不同的时间评估点。传统做法是使用循环逐个求解,但这种方法效率低下,无法充分利用现代计算硬件的并行能力。
Diffrax的向量化解决方案
Diffrax通过JAX的vmap
函数实现了高效的并行求解。我们可以将多个ODE系统视为一个批次(batch),然后利用向量化运算一次性求解所有系统。每个系统可以保持独立的求解过程,包括:
- 不同的初始条件
- 不同的时间评估点
- 不同的步长控制
- 不同的求解统计信息
实现示例
以下代码展示了如何使用Diffrax同时求解两个不同的ODE系统:
import jax
import jax.numpy as jnp
from diffrax import diffeqsolve, ODETerm, Dopri5, SaveAt, PIDController
# 定义ODE右侧函数
def f(t, y, args):
return -0.5 * y # 简单的指数衰减系统
# 两个不同的初始条件
y0 = jnp.array([[1.2], [5.0]])
# 两个不同的时间评估网格
n_steps = 10
t_eval = jnp.stack((jnp.linspace(0, 5, n_steps),
jnp.linspace(3, 4, n_steps)))
# 创建ODE求解组件
term = ODETerm(f)
solver = Dopri5()
stepsize_controller = PIDController(atol=1e-6, rtol=1e-3)
# 定义单个求解函数
def solve(y0, ts):
saveat = SaveAt(ts=ts)
return diffeqsolve(term, solver, t0=ts[0], t1=5, dt0=0.1,
y0=y0, saveat=saveat, stepsize_controller=stepsize_controller)
# 使用vmap进行向量化求解
sol = jax.vmap(solve)(y0, t_eval)
# 打印每个系统的求解步数
print(sol.stats["num_steps"]) # 输出类似 [4 3]
技术优势
- 完全并行化:所有ODE系统同时求解,无需循环
- 独立控制:每个系统保持独立的步长控制和求解过程
- 高效内存:利用JAX的优化计算图,内存使用高效
- 自动微分:可与JAX的自动微分无缝结合,便于参数优化
应用场景
这种技术特别适用于以下场景:
- 参数敏感性分析
- 贝叶斯推断中的并行采样
- 大规模初始条件扫描
- 不确定性量化研究
性能考量
虽然向量化求解带来了显著的性能提升,但也需要注意:
- 当系统间复杂度差异很大时,整体性能会受到最慢系统的限制
- 内存消耗会随着批量大小线性增长
- 对于极端病态系统,可能需要单独处理
Diffrax的这种向量化求解方法为大规模科学计算提供了高效、简洁的解决方案,充分展现了JAX生态在科学计算中的优势。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5