使用Diffrax高效并行求解不同参数的ODE系统
2025-07-10 21:04:17作者:范靓好Udolf
Diffrax作为JAX生态中的微分方程求解库,提供了强大的并行计算能力。本文将介绍如何利用Diffrax的向量化功能,高效地同时求解多个参数不同的常微分方程(ODE)系统。
问题背景
在实际科学计算中,我们经常遇到需要同时求解大量ODE系统的情况。这些系统可能具有不同的初始条件、不同的参数,甚至不同的时间评估点。传统做法是使用循环逐个求解,但这种方法效率低下,无法充分利用现代计算硬件的并行能力。
Diffrax的向量化解决方案
Diffrax通过JAX的vmap函数实现了高效的并行求解。我们可以将多个ODE系统视为一个批次(batch),然后利用向量化运算一次性求解所有系统。每个系统可以保持独立的求解过程,包括:
- 不同的初始条件
- 不同的时间评估点
- 不同的步长控制
- 不同的求解统计信息
实现示例
以下代码展示了如何使用Diffrax同时求解两个不同的ODE系统:
import jax
import jax.numpy as jnp
from diffrax import diffeqsolve, ODETerm, Dopri5, SaveAt, PIDController
# 定义ODE右侧函数
def f(t, y, args):
return -0.5 * y # 简单的指数衰减系统
# 两个不同的初始条件
y0 = jnp.array([[1.2], [5.0]])
# 两个不同的时间评估网格
n_steps = 10
t_eval = jnp.stack((jnp.linspace(0, 5, n_steps),
jnp.linspace(3, 4, n_steps)))
# 创建ODE求解组件
term = ODETerm(f)
solver = Dopri5()
stepsize_controller = PIDController(atol=1e-6, rtol=1e-3)
# 定义单个求解函数
def solve(y0, ts):
saveat = SaveAt(ts=ts)
return diffeqsolve(term, solver, t0=ts[0], t1=5, dt0=0.1,
y0=y0, saveat=saveat, stepsize_controller=stepsize_controller)
# 使用vmap进行向量化求解
sol = jax.vmap(solve)(y0, t_eval)
# 打印每个系统的求解步数
print(sol.stats["num_steps"]) # 输出类似 [4 3]
技术优势
- 完全并行化:所有ODE系统同时求解,无需循环
- 独立控制:每个系统保持独立的步长控制和求解过程
- 高效内存:利用JAX的优化计算图,内存使用高效
- 自动微分:可与JAX的自动微分无缝结合,便于参数优化
应用场景
这种技术特别适用于以下场景:
- 参数敏感性分析
- 贝叶斯推断中的并行采样
- 大规模初始条件扫描
- 不确定性量化研究
性能考量
虽然向量化求解带来了显著的性能提升,但也需要注意:
- 当系统间复杂度差异很大时,整体性能会受到最慢系统的限制
- 内存消耗会随着批量大小线性增长
- 对于极端病态系统,可能需要单独处理
Diffrax的这种向量化求解方法为大规模科学计算提供了高效、简洁的解决方案,充分展现了JAX生态在科学计算中的优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178