Kubernetes Kueue项目中MultiKueue端到端测试的稳定性问题分析
在Kubernetes Kueue项目的MultiKueue功能测试中,发现了一个关于RayCluster工作节点启动的稳定性问题。该问题表现为在端到端测试中,RayCluster工作节点有时无法在规定时间内完成启动并达到预期状态。
测试场景设计用于验证MultiKueue的准入检查功能,具体测试当创建MultiKueue admission check时,如果工作节点被准入,应该能够成功运行RayCluster。测试期望在45秒内看到工作节点状态从0变为1,但实际运行中有时会超时失败。
从日志分析来看,虽然Kubelet日志显示工作容器的Readiness探针已经成功,但测试断言仍然失败。这表明问题可能不是简单的容器启动失败,而是涉及到更复杂的时序或资源竞争条件。
技术专家分析认为,这个问题可能由以下几个因素导致:
-
资源限制:测试环境可能面临CPU资源不足的情况。特别是在引入了Ray和AppWrapper等Operator后,系统负载增加,原有的资源配额可能已不再适用。
-
镜像大小:早期测试使用的是完整的rayproject/ray:2.9.0镜像,启动时间较长。虽然后续已改用更轻量级的ray-mini镜像,但完整镜像仍用于周期性测试。
-
超时设置:当前测试使用的LongTimeout(45秒)可能不足以保证在各种条件下都能稳定完成测试,特别是考虑到资源竞争和网络延迟等因素。
解决方案方面,技术团队建议:
-
增加测试超时时间,从LongTimeout调整为VeryLongTimeout,为测试提供更充裕的执行窗口。
-
考虑调整测试环境的资源配置,特别是CPU配额,从原来的10核增加到12核,以适应新增的工作负载。
-
持续监控测试环境的资源使用情况,通过仪表板确认是否存在CPU资源瓶颈。
这个问题反映了在复杂分布式系统测试中常见的时序和资源敏感性。通过调整超时和资源配置,可以在不改变核心测试逻辑的情况下提高测试的稳定性,同时保持测试的验证价值。这也提醒我们在设计系统测试时,需要充分考虑环境因素对测试结果的影响。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00