Kubernetes Kueue项目中MultiKueue端到端测试的稳定性问题分析
在Kubernetes Kueue项目的MultiKueue功能测试中,发现了一个关于RayCluster工作节点启动的稳定性问题。该问题表现为在端到端测试中,RayCluster工作节点有时无法在规定时间内完成启动并达到预期状态。
测试场景设计用于验证MultiKueue的准入检查功能,具体测试当创建MultiKueue admission check时,如果工作节点被准入,应该能够成功运行RayCluster。测试期望在45秒内看到工作节点状态从0变为1,但实际运行中有时会超时失败。
从日志分析来看,虽然Kubelet日志显示工作容器的Readiness探针已经成功,但测试断言仍然失败。这表明问题可能不是简单的容器启动失败,而是涉及到更复杂的时序或资源竞争条件。
技术专家分析认为,这个问题可能由以下几个因素导致:
-
资源限制:测试环境可能面临CPU资源不足的情况。特别是在引入了Ray和AppWrapper等Operator后,系统负载增加,原有的资源配额可能已不再适用。
-
镜像大小:早期测试使用的是完整的rayproject/ray:2.9.0镜像,启动时间较长。虽然后续已改用更轻量级的ray-mini镜像,但完整镜像仍用于周期性测试。
-
超时设置:当前测试使用的LongTimeout(45秒)可能不足以保证在各种条件下都能稳定完成测试,特别是考虑到资源竞争和网络延迟等因素。
解决方案方面,技术团队建议:
-
增加测试超时时间,从LongTimeout调整为VeryLongTimeout,为测试提供更充裕的执行窗口。
-
考虑调整测试环境的资源配置,特别是CPU配额,从原来的10核增加到12核,以适应新增的工作负载。
-
持续监控测试环境的资源使用情况,通过仪表板确认是否存在CPU资源瓶颈。
这个问题反映了在复杂分布式系统测试中常见的时序和资源敏感性。通过调整超时和资源配置,可以在不改变核心测试逻辑的情况下提高测试的稳定性,同时保持测试的验证价值。这也提醒我们在设计系统测试时,需要充分考虑环境因素对测试结果的影响。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









