多维数据分析:使用Pandas进行原始值归一化处理
2025-06-04 20:13:44作者:裴麒琰
前言
在数据分析领域,处理多维数据是一项常见但具有挑战性的任务。本文将基于一个实际案例,展示如何使用Pandas对多维数据进行有效分析和可视化,特别是如何将原始计数数据转换为更有意义的百分比形式。
准备工作
首先,我们需要设置分析环境并导入必要的库:
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
from sqlalchemy import create_engine
# 设置图形样式和大小
plt.style.use(['seaborn-talk', 'seaborn-ticks', 'seaborn-whitegrid'])
plt.rcParams['figure.figsize'] = (15, 7)
数据获取
我们从数据库中获取Facebook用户的性别和社会观点数据:
# 构建数据库连接
conn_string = 'mysql+pymysql://{user}:{password}@{host}:{port}/{db}'.format(
user='student',
password='dwdstudent2015',
host='db.ipeirotis.org',
port=3306,
db='facebook')
engine = create_engine(conn_string)
# 查询SQL获取数据
query = '''
SELECT Sex, SocialViews, COUNT(*) AS cnt
FROM Profiles
WHERE Sex IS NOT NULL AND SocialViews IS NOT NULL
GROUP BY Sex, SocialViews
ORDER BY SocialViews, Sex
'''
df = pd.read_sql(query, con=engine)
数据透视与初步可视化
原始数据是长格式的,我们需要将其转换为宽格式以便分析:
# 创建透视表
dfp = pd.pivot_table(
data=df,
index='SocialViews',
columns='Sex',
values='cnt',
aggfunc='sum'
)
此时直接绘制图表可能不太直观:
dfp.plot(kind='bar')
数据规范化处理
按列归一化(性别维度)
由于男女用户数量不同,我们需要按性别进行归一化:
dfp_norm = dfp / dfp.sum()
dfp_norm.plot(kind='bar')
这种归一化方式展示了在每个社会观点类别中,男女用户各自所占的比例。
按行归一化(社会观点维度)
我们也可以反过来,查看在每个性别中,不同社会观点的分布:
dfp_norm2 = dfp.T / dfp.T.sum()
dfp_norm2.T.plot(kind='bar', rot=45)
进阶可视化技巧
使用堆叠条形图可以更直观地比较不同性别在各社会观点中的分布:
dfp_norm2.T.plot(kind='bar', stacked=True, rot=45)
实际应用案例
让我们通过一个实际案例巩固所学知识:分析不同感情状态用户寻找的关系类型。
数据查询与处理
query = '''
SELECT R.Status, L.LookingFor, COUNT(*) AS cnt
FROM Relationship R INNER JOIN LookingFor L ON R.ProfileID = L.ProfileID
GROUP BY R.Status, L.LookingFor
HAVING cnt>10
'''
df_relationship = pd.read_sql(query, con=engine)
pivot = df_relationship.pivot_table(
index='Status',
columns='LookingFor',
values='cnt'
)
多角度分析
- 按感情状态归一化:
normed1 = pivot / pivot.sum()
normed1.T.plot.barh()
- 按寻找关系类型归一化:
normed2 = (pivot.T / pivot.T.sum())
normed2.T.plot.barh()
总结
通过本文的学习,我们掌握了:
- 使用Pandas对多维数据进行透视分析
- 按不同维度对数据进行归一化处理
- 选择合适的可视化方式展示分析结果
这些技能在处理任何多维数据集时都非常有用,能够帮助我们从不同角度理解数据的内在结构和关系。记住,选择哪种归一化方式取决于你的分析目的和想要回答的问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0304- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K