多维数据分析:使用Pandas进行原始值归一化处理
2025-06-04 14:31:45作者:裴麒琰
前言
在数据分析领域,处理多维数据是一项常见但具有挑战性的任务。本文将基于一个实际案例,展示如何使用Pandas对多维数据进行有效分析和可视化,特别是如何将原始计数数据转换为更有意义的百分比形式。
准备工作
首先,我们需要设置分析环境并导入必要的库:
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
from sqlalchemy import create_engine
# 设置图形样式和大小
plt.style.use(['seaborn-talk', 'seaborn-ticks', 'seaborn-whitegrid'])
plt.rcParams['figure.figsize'] = (15, 7)
数据获取
我们从数据库中获取Facebook用户的性别和社会观点数据:
# 构建数据库连接
conn_string = 'mysql+pymysql://{user}:{password}@{host}:{port}/{db}'.format(
user='student',
password='dwdstudent2015',
host='db.ipeirotis.org',
port=3306,
db='facebook')
engine = create_engine(conn_string)
# 查询SQL获取数据
query = '''
SELECT Sex, SocialViews, COUNT(*) AS cnt
FROM Profiles
WHERE Sex IS NOT NULL AND SocialViews IS NOT NULL
GROUP BY Sex, SocialViews
ORDER BY SocialViews, Sex
'''
df = pd.read_sql(query, con=engine)
数据透视与初步可视化
原始数据是长格式的,我们需要将其转换为宽格式以便分析:
# 创建透视表
dfp = pd.pivot_table(
data=df,
index='SocialViews',
columns='Sex',
values='cnt',
aggfunc='sum'
)
此时直接绘制图表可能不太直观:
dfp.plot(kind='bar')
数据规范化处理
按列归一化(性别维度)
由于男女用户数量不同,我们需要按性别进行归一化:
dfp_norm = dfp / dfp.sum()
dfp_norm.plot(kind='bar')
这种归一化方式展示了在每个社会观点类别中,男女用户各自所占的比例。
按行归一化(社会观点维度)
我们也可以反过来,查看在每个性别中,不同社会观点的分布:
dfp_norm2 = dfp.T / dfp.T.sum()
dfp_norm2.T.plot(kind='bar', rot=45)
进阶可视化技巧
使用堆叠条形图可以更直观地比较不同性别在各社会观点中的分布:
dfp_norm2.T.plot(kind='bar', stacked=True, rot=45)
实际应用案例
让我们通过一个实际案例巩固所学知识:分析不同感情状态用户寻找的关系类型。
数据查询与处理
query = '''
SELECT R.Status, L.LookingFor, COUNT(*) AS cnt
FROM Relationship R INNER JOIN LookingFor L ON R.ProfileID = L.ProfileID
GROUP BY R.Status, L.LookingFor
HAVING cnt>10
'''
df_relationship = pd.read_sql(query, con=engine)
pivot = df_relationship.pivot_table(
index='Status',
columns='LookingFor',
values='cnt'
)
多角度分析
- 按感情状态归一化:
normed1 = pivot / pivot.sum()
normed1.T.plot.barh()
- 按寻找关系类型归一化:
normed2 = (pivot.T / pivot.T.sum())
normed2.T.plot.barh()
总结
通过本文的学习,我们掌握了:
- 使用Pandas对多维数据进行透视分析
- 按不同维度对数据进行归一化处理
- 选择合适的可视化方式展示分析结果
这些技能在处理任何多维数据集时都非常有用,能够帮助我们从不同角度理解数据的内在结构和关系。记住,选择哪种归一化方式取决于你的分析目的和想要回答的问题。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137