Trulens项目中groundedness评估函数返回NaN问题的分析与解决
2025-07-01 12:36:23作者:魏献源Searcher
问题背景
在Trulens项目的groundedness_measure_with_cot_reasons_consider_answerability函数中,当参数filter_trivial_statements=True且所有语句都被_remove_trivial_statements()过滤掉时,该函数会返回NaN值。这个问题不仅存在于这一个函数中,其他类似的groundedness评估函数也可能存在相同的行为。
问题根源分析
该问题的产生源于以下几个关键环节:
- 语句过滤机制:当启用
filter_trivial_statements选项时,系统会过滤掉所有被认为是"琐碎"的语句 - 空列表处理:如果所有语句都被过滤掉,
hypotheses列表将为空 - 评估流程:后续的
results列表和groundedness_scores字典也会为空 - 数值计算:最终对空字典进行平均值计算时,NumPy会返回NaN
技术影响
- 接口契约违背:函数文档明确说明返回值应该在0.0到1.0之间,但NaN不在这个范围内
- 下游处理困难:使用该函数的代码可能没有处理NaN值的逻辑,导致意外行为
- 警告信息:NumPy会发出"Mean of empty slice"和"invalid value encountered in scalar divide"警告
解决方案建议
-
默认返回值:当没有非平凡语句可评估时,返回0.0并附带说明原因
if not hypotheses: return 0.0, {"reason": "No non-trivial statements to evaluate"} -
类型提示改进:使用更精确的类型提示,明确表示可能返回NaN值
- 可以考虑使用Pydantic的
AllowInfNan类型 - 或者自定义类型如"NumberBetween0and1AllowsInfNan"
- 可以考虑使用Pydantic的
-
文档更新:在函数文档中明确说明在特定情况下可能返回NaN值
更深层次的思考
这个问题引发了一些关于评估指标设计的思考:
- 指标边界情况:在设计评估指标时,需要考虑所有可能的边界情况
- 指标语义:groundedness指标应该专注于评估基础性,而不是回答的相关性
- 指标组合:对于完全由琐碎语句组成的响应,可能需要结合多个指标来全面评估
最佳实践建议
- 防御性编程:在实现评估函数时,应该考虑所有可能的输入情况
- 明确契约:函数接口应该清晰地定义所有可能的返回值及其含义
- 组合使用指标:在实际应用中,建议结合groundedness和其他指标(如answer relevance)一起使用
总结
Trulens项目中groundedness评估函数返回NaN的问题虽然看似简单,但涉及到了接口设计、数值计算和指标语义等多个方面。通过合理的默认值设置、精确的类型提示和清晰的文档说明,可以有效地解决这个问题,同时提高代码的健壮性和可维护性。这也提醒我们在实现类似的评估函数时,需要充分考虑各种边界情况,确保函数行为的可预测性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1