Trulens项目中groundedness评估函数返回NaN问题的分析与解决
2025-07-01 06:56:48作者:魏献源Searcher
问题背景
在Trulens项目的groundedness_measure_with_cot_reasons_consider_answerability函数中,当参数filter_trivial_statements=True且所有语句都被_remove_trivial_statements()过滤掉时,该函数会返回NaN值。这个问题不仅存在于这一个函数中,其他类似的groundedness评估函数也可能存在相同的行为。
问题根源分析
该问题的产生源于以下几个关键环节:
- 语句过滤机制:当启用
filter_trivial_statements选项时,系统会过滤掉所有被认为是"琐碎"的语句 - 空列表处理:如果所有语句都被过滤掉,
hypotheses列表将为空 - 评估流程:后续的
results列表和groundedness_scores字典也会为空 - 数值计算:最终对空字典进行平均值计算时,NumPy会返回NaN
技术影响
- 接口契约违背:函数文档明确说明返回值应该在0.0到1.0之间,但NaN不在这个范围内
- 下游处理困难:使用该函数的代码可能没有处理NaN值的逻辑,导致意外行为
- 警告信息:NumPy会发出"Mean of empty slice"和"invalid value encountered in scalar divide"警告
解决方案建议
-
默认返回值:当没有非平凡语句可评估时,返回0.0并附带说明原因
if not hypotheses: return 0.0, {"reason": "No non-trivial statements to evaluate"} -
类型提示改进:使用更精确的类型提示,明确表示可能返回NaN值
- 可以考虑使用Pydantic的
AllowInfNan类型 - 或者自定义类型如"NumberBetween0and1AllowsInfNan"
- 可以考虑使用Pydantic的
-
文档更新:在函数文档中明确说明在特定情况下可能返回NaN值
更深层次的思考
这个问题引发了一些关于评估指标设计的思考:
- 指标边界情况:在设计评估指标时,需要考虑所有可能的边界情况
- 指标语义:groundedness指标应该专注于评估基础性,而不是回答的相关性
- 指标组合:对于完全由琐碎语句组成的响应,可能需要结合多个指标来全面评估
最佳实践建议
- 防御性编程:在实现评估函数时,应该考虑所有可能的输入情况
- 明确契约:函数接口应该清晰地定义所有可能的返回值及其含义
- 组合使用指标:在实际应用中,建议结合groundedness和其他指标(如answer relevance)一起使用
总结
Trulens项目中groundedness评估函数返回NaN的问题虽然看似简单,但涉及到了接口设计、数值计算和指标语义等多个方面。通过合理的默认值设置、精确的类型提示和清晰的文档说明,可以有效地解决这个问题,同时提高代码的健壮性和可维护性。这也提醒我们在实现类似的评估函数时,需要充分考虑各种边界情况,确保函数行为的可预测性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134