LM-Evaluation-Harness:全面评估语言模型性能的工具包
项目介绍
LM-Evaluation-Harness 是由 AI21 Labs 开发的一个开源项目,旨在提供一个标准化框架来评估大型预训练语言模型(Language Models)的表现。它包含了多种基准测试套件,允许开发者和研究人员轻松地测试他们的语言模型在不同任务上的理解能力与生成质量。从常见的自然语言推理到特定领域的问题解答,这个库支持广泛的任务,帮助用户深入了解其模型的优势和局限。
项目快速启动
要开始使用 LM-Evaluation-Harness
,首先确保你的系统上安装了 Python 和必要的依赖。接下来,按照以下步骤操作:
安装
通过 pip 安装项目及其依赖:
pip install git+https://github.com/AI21Labs/lm-evaluation.git
快速运行示例
安装完成后,你可以立即评估一个简单的模型,例如评估一个小的预训练模型在某个任务上的表现。这里以运行 COQA(The Common Sense Question Answering Dataset)为例:
from lm_eval import evaluator, tasks
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# 初始化评估器并选择任务
evaluator = evaluator(model, tokenizer)
results = evaluator.eval(tasks["coqa"])
print(results)
这段代码将会加载 T5 小型模型,并对其在 COQA 数据集上的表现进行评估,输出模型的得分。
应用案例和最佳实践
应用案例广泛,包括但不限于,在新模型开发中的性能基准对比、模型调优过程中的持续评估,以及在教育、医疗等领域内的特定应用场景测试。最佳实践建议是,始终在多个任务上测试模型,这不仅能够提供一个更全面的能力评估,还能揭示模型在特定领域的潜在弱点。
典型生态项目
本项目促进了开源社区中语言模型评估标准的发展。开发者可将自己的新任务或模型集成到此框架中,增强生态系统。例如,研究团队可以基于 LM-Evaluation-Harness
构建定制化的评估指标,或者企业可以利用该工具来验证其商业模型在实际场景中的适应性。通过这种方式,AI21 Labs 的这一工具成为促进AI研究进步和应用落地的关键平台之一。
以上就是对 LM-Evaluation-Harness 的简要介绍与快速入门指南,希望对你在评估语言模型的旅程中有所帮助。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









