LM-Evaluation-Harness:一个全面的语言模型评估工具包
2024-08-24 21:37:12作者:齐添朝
本教程旨在详细介绍LM-Evaluation-Harness的结构、核心组件及其配置方法,帮助开发者和研究人员快速上手并有效利用该开源项目来评估他们的语言模型性能。
1. 项目的目录结构及介绍
LM-Evaluation-Harness的目录结构设计得既清晰又直观,便于开发者理解和扩展。以下是对关键目录和文件的简要说明:
lm_evaluation_harness/
│
├── src/ # 核心源代码所在目录
│ ├── evaluator.py # 主要的评估器实现,负责执行各种任务的评估
│ ├── tasks/ # 包含所有预定义的任务评估模块,如commonsenseqa、sst2等
│ └── utils.py # 辅助函数集,包含通用功能
│
├── examples/ # 示例脚本和使用案例
│ └── run_eval.py # 示例:如何运行评估
│
├── requirements.txt # 项目依赖列表
├── setup.py # 项目安装脚本
└── README.md # 项目简介和快速入门指南
src目录是项目的核心,包含了评估逻辑和任务定义;examples目录提供了快速启动和测试项目的示例;requirements.txt列出了项目运行所需的Python库。
2. 项目的启动文件介绍
主要的启动入口位于示例脚本中,尤其是examples/run_eval.py。通过这个脚本,用户可以简便地调用评估器来测试自己的模型。一个基本的执行流程可能包括指定模型路径、选择要进行的评估任务以及执行评估。这为初次使用者提供了一个低门槛的起点,允许他们快速验证语言模型的表现。
# 假设的run_eval.py简化示例
from lm_evaluation_harness import Evaluator
model = "your_model_path" # 用户自定义模型的路径
evaluator = Evaluator(model=model)
results = evaluator.evaluate() # 默认评估所有可用任务或指定任务
print(results)
3. 项目的配置文件介绍
虽然LM-Evaluation-Harness直接在代码中提供了很多配置选项(特别是在任务和模型调用时),它并没有严格要求一个独立的配置文件。然而,对于复杂设置或个性化需求,配置通常通过参数传递给评估器或具体任务。例如,可以通过修改示例脚本中的参数来调整评估细节,比如选择特定任务、调整批处理大小、启用或禁用特定的功能等。
# 示例:通过参数定制化评估过程
evaluator = Evaluator(model=model, task="cola", batch_size=8)
尽管没有直接的.yaml或.json配置文件模板,项目的设计使其灵活,可通过编程方式高度定制化配置,确保了对各种需求的广泛适应性。
此教程概览了LM-Evaluation-Harness的基本框架和操作要点,为新用户提供了一条清晰的学习与应用路径。深入研究源码和阅读官方文档将有助于更全面地掌握这一强大工具的所有潜能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
212
85
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1