LM-Evaluation-Harness:一个全面的语言模型评估工具包
2024-08-24 13:06:46作者:齐添朝
本教程旨在详细介绍LM-Evaluation-Harness的结构、核心组件及其配置方法,帮助开发者和研究人员快速上手并有效利用该开源项目来评估他们的语言模型性能。
1. 项目的目录结构及介绍
LM-Evaluation-Harness的目录结构设计得既清晰又直观,便于开发者理解和扩展。以下是对关键目录和文件的简要说明:
lm_evaluation_harness/
│
├── src/ # 核心源代码所在目录
│ ├── evaluator.py # 主要的评估器实现,负责执行各种任务的评估
│ ├── tasks/ # 包含所有预定义的任务评估模块,如commonsenseqa、sst2等
│ └── utils.py # 辅助函数集,包含通用功能
│
├── examples/ # 示例脚本和使用案例
│ └── run_eval.py # 示例:如何运行评估
│
├── requirements.txt # 项目依赖列表
├── setup.py # 项目安装脚本
└── README.md # 项目简介和快速入门指南
src目录是项目的核心,包含了评估逻辑和任务定义;examples目录提供了快速启动和测试项目的示例;requirements.txt列出了项目运行所需的Python库。
2. 项目的启动文件介绍
主要的启动入口位于示例脚本中,尤其是examples/run_eval.py
。通过这个脚本,用户可以简便地调用评估器来测试自己的模型。一个基本的执行流程可能包括指定模型路径、选择要进行的评估任务以及执行评估。这为初次使用者提供了一个低门槛的起点,允许他们快速验证语言模型的表现。
# 假设的run_eval.py简化示例
from lm_evaluation_harness import Evaluator
model = "your_model_path" # 用户自定义模型的路径
evaluator = Evaluator(model=model)
results = evaluator.evaluate() # 默认评估所有可用任务或指定任务
print(results)
3. 项目的配置文件介绍
虽然LM-Evaluation-Harness直接在代码中提供了很多配置选项(特别是在任务和模型调用时),它并没有严格要求一个独立的配置文件。然而,对于复杂设置或个性化需求,配置通常通过参数传递给评估器或具体任务。例如,可以通过修改示例脚本中的参数来调整评估细节,比如选择特定任务、调整批处理大小、启用或禁用特定的功能等。
# 示例:通过参数定制化评估过程
evaluator = Evaluator(model=model, task="cola", batch_size=8)
尽管没有直接的.yaml
或.json
配置文件模板,项目的设计使其灵活,可通过编程方式高度定制化配置,确保了对各种需求的广泛适应性。
此教程概览了LM-Evaluation-Harness的基本框架和操作要点,为新用户提供了一条清晰的学习与应用路径。深入研究源码和阅读官方文档将有助于更全面地掌握这一强大工具的所有潜能。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0259PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp课程视频测验中的Tab键导航问题解析9 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
919
551

飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署)
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8

React Native鸿蒙化仓库
C++
193
273

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16