EPCDepth 项目使用教程
2024-09-28 16:55:47作者:卓艾滢Kingsley
1. 项目目录结构及介绍
EPCDepth 项目的目录结构如下:
EPCDepth/
├── dataset/
│ └── kitti_archives_to_download.txt
├── network/
├── nyuv2Testing/
├── tools/
├── .gitattributes
├── LICENSE
├── README.md
├── main.py
├── model.py
├── precompute_depth_hints.py
├── read_depth.py
└── tools.py
目录结构介绍
- dataset/: 包含数据集相关的文件,例如 KITTI 数据集的下载列表。
- network/: 包含深度学习网络模型的相关代码。
- nyuv2Testing/: 包含 NYUv2 数据集的测试代码。
- tools/: 包含一些辅助工具和脚本。
- .gitattributes: Git 属性配置文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- main.py: 项目的主启动文件。
- model.py: 深度学习模型的定义文件。
- precompute_depth_hints.py: 预计算深度提示的脚本。
- read_depth.py: 读取深度信息的脚本。
- tools.py: 其他工具和辅助函数。
2. 项目的启动文件介绍
main.py
main.py 是 EPCDepth 项目的主启动文件。它包含了训练、评估和可视化深度估计的主要逻辑。以下是该文件的主要功能:
- 训练模型: 通过调用
main.py并传入相应的参数,可以启动模型的训练过程。 - 评估模型: 在训练完成后,可以使用
main.py对模型进行评估,生成深度估计结果。 - 可视化结果: 通过
main.py可以对生成的深度图进行可视化,便于观察和分析。
使用示例
python main.py --data_path <your_kitti_path> --model_dir <checkpoint_save_dir> --logs_dir <tensorboard_save_dir> --pretrained --post_process --use_depth_hint --use_spp_distillation --use_data_graft --use_full_scale
3. 项目的配置文件介绍
EPCDepth 项目没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的配置参数:
--data_path: 指定数据集的路径。--model_dir: 指定模型保存的路径。--logs_dir: 指定 TensorBoard 日志保存的路径。--pretrained: 是否使用预训练模型。--post_process: 是否启用后处理。--use_depth_hint: 是否使用深度提示。--use_spp_distillation: 是否使用选择性后处理蒸馏。--use_data_graft: 是否使用数据嫁接。--use_full_scale: 是否使用全尺度网络。
通过这些参数,用户可以根据自己的需求灵活配置项目的运行方式。
以上是 EPCDepth 项目的使用教程,希望对你有所帮助!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111