YOLOv5 开源项目实战指南
2024-08-08 21:14:39作者:田桥桑Industrious
1. 目录结构及介绍
YOLOv5 的目录结构精心设计以支持高效的目标检测任务。以下是核心的目录结构及其简要说明:
├── yolov5 # 主项目根目录
│ ├── data # 包含数据集配置文件和预处理脚本
│ │ └── ... # 数据集相关的配置如coco.yaml等
│ ├── models # 模型定义文件,包括不同大小的YOLOv5模型
│ │ ├── yolov5s.py
│ │ ├── yolov5m.py
│ │ └── ...
│ ├── utils # 工具函数,用于数据加载、转换、显示等
│ │ ├── general.py
│ │ ├── torch_utils.py
│ │ └── ...
│ ├── train.py # 训练脚本,用于训练新的模型
│ ├── val.py # 验证脚本,评估模型性能
│ ├── detect.py # 推理脚本,对单个或多个图像进行目标检测
│ ├── test.py # 可选,有时用于其他形式的测试或验证
│ ├── hubconf.py # PyTorch Hub支持文件
│ ├── README.md # 项目介绍和快速入门指南
│ ├── requirements.txt # 必需的库和版本
│ └── ... # 其他辅助文件和文档
2. 项目的启动文件介绍
训练新模型:train.py
启动训练过程的关键脚本。通过修改该脚本中的参数或提供命令行参数,你可以自定义训练设置,比如选择模型大小、数据集路径、批量大小等。
进行验证:val.py
用于在验证集上评估模型的性能。这有助于监控训练过程中模型的精度改进,并且在训练结束后可以用来确定最佳权重。
实时检测:detect.py
运行此脚本可以在指定的图片或者视频上应用训练好的模型,进行对象检测并展示结果。非常适合快速测试模型效果或实际应用场景。
其他关键脚本
test.py:虽然不是所有项目都必备,但在某些情况下可能会用到更特定的测试逻辑。export.py:允许将模型导出到不同的格式(如ONNX),以便于在其他平台部署。
3. 项目的配置文件介绍
数据集配置:通常位于data目录下
例如,coco.yaml文件是COCO数据集的配置,它指定了类别名称、数据集的训练和验证图像路径以及标签文件的位置。这些配置确保了YOLOv5能够正确地加载和处理数据。
模型超参数配置
YOLOv5通常不直接使用单独的配置文件来控制模型参数。模型的架构和默认参数是在各模型的.py文件中定义的,如yolov5s.py。此外,训练时的超参数(如学习率、批次大小、迭代次数等)通常是通过命令行参数传递给train.py脚本的。
通过理解上述结构和核心文件的作用,开发者可以更有效地利用YOLOv5框架进行目标检测任务的开发、训练和应用。记得根据具体需求调整相关配置,享受开源带来的灵活性与强大功能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218