SeaQL/sea-query 0.32.3版本发布:增强SQL构建能力
SeaQL/sea-query是一个用Rust编写的SQL查询构建器,它提供了类型安全的方式来构建各种SQL语句。通过这个库,开发者可以避免手动拼接SQL字符串带来的安全风险,同时享受到Rust类型系统带来的好处。最新发布的0.32.3版本带来了几项重要的功能增强,进一步提升了SQL构建的灵活性和表达能力。
新增功能详解
支持UPDATE FROM语法
在SQL中,UPDATE FROM语句允许我们基于另一个表的数据来更新当前表。这在需要关联更新时非常有用。新版本中,SeaQL/sea-query现在可以构建这样的查询:
let query = Query::update()
.table(Glyph::Table)
.value(Glyph::Tokens, Expr::column((Char::Table, Char::Character)))
.from(Char::Table)
.cond_where(
Expr::col((Glyph::Table, Glyph::Image))
.eq(Expr::col((Char::Table, Char::UserData))),
)
.to_owned();
这段代码会生成如下SQL(以PostgreSQL为例):
UPDATE "glyph" SET "tokens" = "character"."character" FROM "character"
WHERE "glyph"."image" = "character"."user_data"
这种语法在需要基于关联表数据更新主表时特别有用,避免了子查询或临时表的使用。
支持PostgreSQL的TABLESAMPLE
TABLESAMPLE是PostgreSQL提供的一个强大功能,它允许从表中随机抽样数据。这在处理大型数据集时特别有用,可以快速获取代表性样本而不必处理整个表。
新版本通过扩展方法支持了这一特性:
use sea_query::extension::postgres::PostgresSelectStatementExt;
let query = Query::select()
.columns([Glyph::Image])
.from(Glyph::Table)
.table_sample(SampleMethod::SYSTEM, 50.0, None)
.to_owned();
生成的SQL如下:
SELECT "image" FROM "glyph" TABLESAMPLE SYSTEM (50)
SYSTEM采样方法会对表的物理块进行采样,效率很高。50.0参数表示采样50%的数据。
支持ALTER COLUMN USING语法
在PostgreSQL中,ALTER COLUMN USING允许在修改列类型时指定一个转换表达式。这在需要保留数据的同时改变列类型时非常有用。
新版本支持构建这样的DDL语句:
let table = Table::alter()
.table(Char::Table)
.modify_column(
ColumnDef::new(Char::Id)
.integer()
.using(Expr::col(Char::Id).cast_as(Alias::new("integer"))),
)
.to_owned();
生成的SQL如下:
ALTER TABLE "character" ALTER COLUMN "id" TYPE integer USING CAST("id" AS integer)
这在需要将字符串类型转换为数值类型等场景下特别有用,可以确保数据转换的正确性。
内部改进
除了上述功能增强外,0.32.3版本还进行了以下内部改进:
-
将ordered-float依赖升级到了4.x版本,这是一个用于处理有序浮点数的库,在SQL构建中用于处理浮点数值。
-
将thiserror依赖升级到了2.x版本,这个库提供了更方便的错误处理宏,使得SeaQL/sea-query的错误处理更加简洁高效。
总结
SeaQL/sea-query 0.32.3版本通过新增对UPDATE FROM、TABLESAMPLE和ALTER COLUMN USING等SQL语法的支持,进一步丰富了其SQL构建能力。这些增强使得开发者能够更灵活地构建复杂的SQL语句,同时保持类型安全和代码可维护性。
对于使用PostgreSQL的开发者来说,新增的TABLESAMPLE支持特别有价值,它为大数据分析场景提供了便利。而UPDATE FROM语法则简化了关联更新操作,ALTER COLUMN USING则为数据库迁移提供了更多灵活性。
随着这些功能的加入,SeaQL/sea-query继续巩固其作为Rust生态中强大SQL构建器的地位,为开发者提供了更完善的工具来处理各种数据库操作需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00