Chinadns-ng项目2025.06.20版本发布:DNS解析工具的重大更新
Chinadns-ng是一款专注于DNS解析优化的工具,它通过智能分流技术实现了国内外DNS查询的高效处理。该项目特别适合需要同时访问国内外网络资源的用户,能够有效解决DNS解析异常和解析延迟等问题。
核心更新内容
本次2025.06.20版本带来了两个重要改进:
-
wolfssl依赖库升级至5.8.0:作为支持DoT(DNS over TLS)功能的关键组件,wolfssl库的更新带来了性能提升和安全增强。新版本优化了加密算法实现,特别是在x86_64(v3/v4)和aarch64架构上启用了硬件加速指令,显著提高了TLS握手和加密解密的效率。
-
本地资源记录优先级调整:这一改动使得用户可以通过特殊配置实现白名单解析功能。具体来说,当将default-tag设置为null时,可以实现仅解析白名单中的域名,其他域名则不做解析。这种设计为需要精细控制DNS解析行为的用户提供了更大的灵活性。
架构支持与优化
Chinadns-ng项目提供了丰富的架构支持,确保在各种硬件平台上都能获得最佳性能:
-
x86_64架构:针对不同微架构级别(v2/v3/v4)进行了专门优化,特别是v3/v4版本充分利用了现代CPU的AVX等指令集加速加密运算。
-
ARM架构:覆盖了从v5到v9的各种ARM指令集版本,包括32位和64位实现。特别值得注意的是,针对树莓派等可能缺少某些指令的硬件,提供了无硬件加速的noasm版本。
-
其他架构:项目还支持MIPS、RISC-V等多种架构,确保在各种嵌入式设备和特殊硬件上都能运行。
版本选择建议
对于普通用户,建议根据自身硬件选择对应架构的标准版本。如果需要DoT功能,则应选择带有wolfssl后缀的版本。值得注意的是:
- 现代x86处理器用户应优先选择x86_64_v3或x86_64_v4版本以获得最佳性能。
- ARMv8设备用户可选择aarch64版本,而较旧的ARMv7设备则应选择对应的arm版本。
- 对于加密性能要求不高的场景,可以选择不带wolfssl的标准版本,体积更小,资源占用更低。
技术实现亮点
Chinadns-ng在技术实现上有几个值得关注的创新点:
-
多线程优化:通过精心设计的线程模型,实现了高并发DNS查询处理,即使在大量请求下也能保持稳定性能。
-
内存管理:采用高效的内存分配策略,减少内存碎片,提高缓存命中率。
-
协议支持:完整支持传统DNS和现代DoT协议,满足不同安全需求。
-
智能分流:基于高效的域名匹配算法,实现国内外流量的精准分流。
应用场景
Chinadns-ng特别适用于以下场景:
- 需要同时访问国内外网络服务的用户,解决DNS解析的准确性问题。
- 对网络隐私有要求的用户,可通过DoT功能加密DNS查询。
- 网络管理员需要实现精细的DNS管控策略。
- 嵌入式设备和路由器等资源受限环境下的DNS优化。
总结
Chinadns-ng项目的2025.06.20版本通过核心组件升级和功能优化,进一步提升了DNS解析的效率和灵活性。特别是对硬件加速指令的支持和对本地资源记录优先级的调整,使得这款工具在性能和功能上都达到了新的高度。无论是普通用户还是技术爱好者,都能从这个版本中获得更好的DNS解析体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00