CPR项目中异步多请求处理的实现方式解析
2025-06-01 05:09:41作者:董斯意
概述
在CPR(C++ Requests Library)项目中,开发者经常需要处理多个HTTP请求的并发执行场景。本文将深入探讨CPR提供的两种异步请求处理方式及其适用场景,帮助开发者根据实际需求选择最佳实现方案。
异步请求处理基础
CPR提供了两种主要的异步请求处理机制:
- 单请求异步处理:通过
cpr::GetAsync等函数发起单个异步请求 - 多请求批量处理:通过
cpr::MultiGetAsync模板函数批量发起多个异步请求
这两种方式都基于C++的future/promise模式实现,请求会在后台线程池中执行,主线程不会被阻塞。
实现方式对比
单请求异步处理
std::vector<cpr::AsyncResponse> responses;
for (size_t i = 0; i < 10; ++i) {
responses.emplace_back(cpr::GetAsync(cpr::Url{"example.com"}));
}
这种方式的特点是:
- 请求数量可以在运行时动态确定
- 每个请求独立处理,灵活性高
- 代码结构简单直观
多请求批量处理
auto futures = cpr::MultiGetAsync(
std::tuple{cpr::Url{"example1.com"}, cpr::Url{"example2.com"}}
);
这种方式的特点是:
- 请求数量必须在编译时确定
- 通过模板元编程优化,可能带来轻微的性能提升
- 语法更简洁,适合固定数量的请求场景
核心机制解析
两种方式在底层实现上本质相同,都是将请求任务提交到全局线程池执行。主要区别在于:
- MultiGetAsync只是对多个GetAsync调用的编译时优化封装
- 两者都返回future对象,实际请求处理都在后台线程进行
- 主线程只有在调用get()或wait()时才会阻塞
最佳实践建议
- 请求数量固定:使用MultiGetAsync可以获得更简洁的代码
- 请求数量动态:使用循环+GetAsync组合更合适
- 性能考量:两种方式性能差异极小,应优先考虑代码可读性
- 错误处理:两种方式都需要单独处理每个future可能抛出的异常
总结
CPR项目提供了灵活的多请求并发处理方案,开发者可以根据请求数量是否在编译时确定来选择合适的实现方式。理解这两种方式的底层一致性有助于在实际项目中做出更合理的技术选型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660