CPR项目中异步多请求处理的实现方式解析
2025-06-01 10:50:35作者:董斯意
概述
在CPR(C++ Requests Library)项目中,开发者经常需要处理多个HTTP请求的并发执行场景。本文将深入探讨CPR提供的两种异步请求处理方式及其适用场景,帮助开发者根据实际需求选择最佳实现方案。
异步请求处理基础
CPR提供了两种主要的异步请求处理机制:
- 单请求异步处理:通过
cpr::GetAsync等函数发起单个异步请求 - 多请求批量处理:通过
cpr::MultiGetAsync模板函数批量发起多个异步请求
这两种方式都基于C++的future/promise模式实现,请求会在后台线程池中执行,主线程不会被阻塞。
实现方式对比
单请求异步处理
std::vector<cpr::AsyncResponse> responses;
for (size_t i = 0; i < 10; ++i) {
responses.emplace_back(cpr::GetAsync(cpr::Url{"example.com"}));
}
这种方式的特点是:
- 请求数量可以在运行时动态确定
- 每个请求独立处理,灵活性高
- 代码结构简单直观
多请求批量处理
auto futures = cpr::MultiGetAsync(
std::tuple{cpr::Url{"example1.com"}, cpr::Url{"example2.com"}}
);
这种方式的特点是:
- 请求数量必须在编译时确定
- 通过模板元编程优化,可能带来轻微的性能提升
- 语法更简洁,适合固定数量的请求场景
核心机制解析
两种方式在底层实现上本质相同,都是将请求任务提交到全局线程池执行。主要区别在于:
- MultiGetAsync只是对多个GetAsync调用的编译时优化封装
- 两者都返回future对象,实际请求处理都在后台线程进行
- 主线程只有在调用get()或wait()时才会阻塞
最佳实践建议
- 请求数量固定:使用MultiGetAsync可以获得更简洁的代码
- 请求数量动态:使用循环+GetAsync组合更合适
- 性能考量:两种方式性能差异极小,应优先考虑代码可读性
- 错误处理:两种方式都需要单独处理每个future可能抛出的异常
总结
CPR项目提供了灵活的多请求并发处理方案,开发者可以根据请求数量是否在编译时确定来选择合适的实现方式。理解这两种方式的底层一致性有助于在实际项目中做出更合理的技术选型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134