LLaMA-Factory项目中LoRA训练与模型合并的关键问题解析
2025-05-01 17:53:31作者:谭伦延
在LLaMA-Factory项目的最新版本0.9.3.dev0中,用户在进行Qwen2.5-VL-7B-Instruct模型的LoRA微调时遇到了一个典型问题:当配置文件中指定了additional_target: "embed_tokens,lm_head"参数后,训练过程中这些额外的目标模块(embed_tokens和lm_head)未能正确保存,导致后续模型合并阶段出现张量形状不匹配的错误。
问题现象
用户在训练配置中明确指定了需要额外保存embed_tokens和lm_head模块,但在实际训练完成后,检查点文件中这些模块的参数被保存为形状torch.Size([0])的空张量,而非预期的torch.Size([152064, 3584])。当尝试将LoRA适配器合并回基础模型时,系统报错显示无法将空张量与模型中的实际参数形状匹配。
问题根源
经过分析,这一问题与Peft库的特定版本(0.15.0)存在关联。Peft库在处理modules_to_save机制时存在缺陷,导致在保存检查点时无法正确序列化这些额外目标模块的参数。特别是在处理词汇表调整(resize_vocab)和新增特殊令牌(new_special_tokens)的情况下,这一问题表现得尤为明显。
解决方案
要解决这一问题,需要采取以下步骤:
- 将Peft库升级至0.15.1版本,该版本修复了相关缺陷
- 确保LLaMA-Factory项目代码为最新main分支版本
- 使用可编辑模式安装项目(pip install -e .),便于后续更新
- 重新进行模型训练,确保所有目标模块都能正确保存
最佳实践建议
在进行类似LoRA微调任务时,建议用户:
- 始终使用项目的最新稳定版本和配套库的最新兼容版本
- 在训练前仔细检查adapter_config.json文件,确认所有目标模块已正确配置
- 对于涉及词汇表修改的任务,确保resize_vocab参数已正确设置
- 训练完成后,立即验证检查点文件中关键模块的参数形状是否符合预期
这一问题的解决不仅修复了当前的功能缺陷,也为LLaMA-Factory项目中类似结构的模型微调任务提供了可靠的技术保障。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1