MONAI项目中的实时推理支持技术解析
2025-06-03 10:59:15作者:羿妍玫Ivan
引言
在医疗影像AI领域,实时推理能力对于临床应用场景至关重要。MONAI作为医疗影像AI的开源框架,其bundle功能为模型部署提供了便利,但传统设计主要针对批量推理场景。本文将深入探讨MONAI项目中实现实时推理支持的技术方案与挑战。
实时推理的技术挑战
MONAI现有的bundle设计存在两个主要技术瓶颈:
-
批量推理导向的设计:当前bundle配置采用懒加载(lazy-instantiation)机制,所有组件在配置中预定义,无法灵活应对实时推理中动态输入的需求。配置解析时的深拷贝(deep copy)操作限制了运行时的配置修改能力。
-
输入输出管道灵活性不足:第三方应用通常有自定义的输入输出管道,需要替换或删除bundle中的图像加载和保存转换,但当前配置系统缺乏删除键(delete key)的支持。
实时推理解决方案探索
MONAI社区提出了几种创新的技术方案来解决这些挑战:
1. 基于迭代缓冲数据集的流式处理
核心思想是构建一个可迭代的数据集,通过队列机制实现异步数据流处理:
class IterableBufferDataset(torch.utils.data.IterableDataset):
"""基于Queue实现的异步数据流数据集"""
def __init__(self, buffer_size=0, timeout=0.01):
super().__init__()
self.buffer = Queue(buffer_size)
self.timeout = timeout
self._is_running = False
self._lock = RLock()
def add_item(self, item):
"""数据源调用此方法添加新数据项"""
self.buffer.put(item, timeout=self.timeout)
def __iter__(self):
"""持续从队列获取数据项,直到收到停止信号"""
while self.is_running:
try:
item = self.buffer.get(timeout=self.timeout)
if item is self.STOP: # 停止信号
break
yield item
except Empty:
continue
配合流式接收转换(StreamSink)和评估引擎(SupervisedEvaluator),可以构建完整的实时推理流水线。
2. 引擎配置优化
针对实时推理场景,需要对MONAI引擎进行特殊配置:
evaluator = SupervisedEvaluator(
device="cpu",
val_data_loader=stream_dataset, # 使用流式数据集
network=model,
epoch_length=None, # 允许任意长度数据加载
decollate=False, # 不解构批次
postprocessing=StreamSink() # 自定义输出处理
)
这种配置最小化了数据处理环节,提高了实时性。
应用场景扩展
实时推理技术在医疗领域有多种应用场景:
- 视频流处理:超声、内镜等实时影像分析
- 设备集成:与CT/MRI等影像设备的直接对接
- 临床决策支持:手术导航、实时病灶检测等
技术展望与挑战
未来发展方向包括:
- 更高效的流式处理:优化数据管道,减少延迟
- 异构计算支持:整合TensorRT等加速框架
- 标准化接口:定义统一的实时推理API
- 生态系统集成:与Holoscan、DeepStream等流媒体框架的深度整合
结论
MONAI通过创新的流式数据集设计和引擎优化,为医疗影像AI的实时推理应用提供了可行方案。随着技术的不断完善,MONAI将在实时医疗AI领域发挥更大作用,推动AI技术在临床环境中的落地应用。开发者社区需要继续探索更高效、更灵活的实时推理架构,以满足不同临床场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134