Flax框架中如何从nnx.optimizer获取学习率
2025-06-02 08:31:14作者:范垣楠Rhoda
在机器学习模型训练过程中,学习率(learning rate)是一个非常重要的超参数,它直接影响着模型的收敛速度和最终性能。在使用Flax框架进行模型训练时,开发者经常需要实时监控学习率的变化情况,以便更好地调整训练过程。
Flax框架中的nnx模块提供了优化器(optimizer)功能,但默认情况下并不直接暴露学习率参数。这是因为Flax底层使用的是Optax优化库,而Optax的设计理念是将优化器视为纯函数变换,不保留原始的超参数信息。
解决方案
要在训练循环中获取当前的学习率,可以采用以下方法:
- 使用
optax.inject_hyperparams包装器 - 通过优化器状态(opt_state)访问注入的超参数
 
具体实现代码如下:
# 创建带有超参数注入的优化器
tx = optax.inject_hyperparams(optax.nadam)(lr_fn)
optimizer = nnx.Optimizer(model, tx)
for epoch in range(1, num_epochs + 1):
    pbar = tqdm(train_ds)
    for batch in pbar:
        loss_dict = train_step(model, optimizer, batch, loss_fn, epoch)
        # 从优化器状态中获取当前学习率
        lr = optimizer.opt_state.hyperparams['learning_rate'].value
        pbar.set_description(f'Epoch {epoch:3d}, lr: {lr:.7f}, loss: {loss_dict["loss"]:.4f}')
技术原理
这种方法的核心在于optax.inject_hyperparams函数,它会将优化器的超参数(如学习率)注入到优化器状态中。这样在训练过程中,我们就可以通过访问优化器状态的hyperparams属性来获取当前的超参数值。
值得注意的是,这种方法不仅适用于学习率,还可以用于监控其他动态调整的超参数,如动量(momentum)等。这为模型的训练过程监控和调试提供了极大的便利。
最佳实践
在实际应用中,建议:
- 将学习率监控与训练损失一起记录,便于分析两者关系
 - 对于动态学习率调度器,这种方法尤其有用,可以验证学习率是否按预期变化
 - 考虑将学习率变化可视化,更直观地观察训练过程
 
通过这种方法,开发者可以更好地理解和控制模型的训练过程,及时发现潜在问题,提高模型训练的效率和质量。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445