Flax NNX框架中支持Optax L-BFGS优化器的技术实现
2025-06-02 04:35:39作者:殷蕙予
背景介绍
Flax NNX作为JAX生态系统中的神经网络库,提供了灵活的模块系统和训练工具。在实际应用中,二阶优化算法如L-BFGS因其收敛速度快、不需要手动调整学习率等优势,在特定场景下比一阶优化器表现更优。然而,NNX默认的优化器接口与Optax提供的L-BFGS实现存在兼容性问题。
问题本质
Optax中的L-BFGS及其相关优化器实现了GradientTransformationExtraArgs
接口,这与常规优化器使用的GradientTransformation
接口不同。关键区别在于:
- 需要额外的
value_fn
参数来计算目标函数值 - 要求传入当前梯度
grad
和目标函数值value
- 使用
optax.value_and_grad_from_state
进行梯度计算
这种接口差异导致无法直接在NNX的Optimizer
中使用这类优化算法。
技术解决方案
临时解决方案
通过扩展Optimizer.update
方法,可以临时支持L-BFGS类优化器:
def update(self, grads, value=None, value_fn=None):
# 分离模型定义和参数状态
gdef, state = nnx.split(self.model, self.wrt)
# 包装value_fn以处理NNX状态
def value_fn_wrapped(state):
model = nnx.merge(gdef, state)
return value_fn(model)
# 调用优化器更新,传递额外参数
updates, new_opt_state = self.tx.update(
grads, self.opt_state, state,
grad=grads, value=value, value_fn=value_fn_wrapped
)
# 应用参数更新
new_params = optax.apply_updates(state, updates)
self.step.value += 1
nnx.update(self.model, new_params)
self.opt_state = new_opt_state
这种方法的核心在于:
- 正确处理NNX的状态分离与合并
- 适配
value_fn
的接口要求 - 传递优化器所需的所有额外参数
更优的架构设计
从框架设计角度,更完善的解决方案应考虑:
- 接口扩展:为
Optimizer.update
添加**kwargs
参数,直接转发给底层优化器 - 专用优化器类:为
GradientTransformationExtraArgs
实现专门的优化器包装 - 文档示例:提供使用模式的最佳实践指南
实际应用示例
以下是在NNX中使用L-BFGS优化器的完整示例:
# 模型定义
model = nnx.Linear(M, 1, use_bias=False, rngs=rngs)
optimizer = nnx.Optimizer(model, optax.lbfgs())
# 训练步骤
@nnx.jit
def train_step(model, optimizer, X, Y):
def loss_fn(model):
return jnp.mean((model(X) - Y)**2)
loss, grads = nnx.value_and_grad(loss_fn)(model)
optimizer.update(grads, value=loss, value_fn=loss_fn)
return loss
性能考量
使用这类优化器时需注意:
- 二阶优化算法计算成本较高,适合参数规模不大的场景
- 全批量训练通常效果更好,小批量可能需要调整学习策略
- 状态包装会引入额外开销,但对大多数应用影响不大
未来发展方向
Flax NNX可以考虑:
- 原生支持
GradientTransformationExtraArgs
接口 - 提供内置的linesearch优化器实现
- 优化状态管理以减少包装开销
这种改进将使NNX能够更自然地支持各类高级优化算法,同时保持现有API的简洁性。
总结
通过适当扩展接口,Flax NNX能够有效支持Optax提供的L-BFGS等高级优化算法。这为需要快速收敛或自动学习率调整的应用场景提供了有力工具。开发者可以根据实际需求选择临时解决方案或等待框架的正式支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133