Flax NNX框架中支持Optax L-BFGS优化器的技术实现
2025-06-02 14:34:29作者:殷蕙予
背景介绍
Flax NNX作为JAX生态系统中的神经网络库,提供了灵活的模块系统和训练工具。在实际应用中,二阶优化算法如L-BFGS因其收敛速度快、不需要手动调整学习率等优势,在特定场景下比一阶优化器表现更优。然而,NNX默认的优化器接口与Optax提供的L-BFGS实现存在兼容性问题。
问题本质
Optax中的L-BFGS及其相关优化器实现了GradientTransformationExtraArgs
接口,这与常规优化器使用的GradientTransformation
接口不同。关键区别在于:
- 需要额外的
value_fn
参数来计算目标函数值 - 要求传入当前梯度
grad
和目标函数值value
- 使用
optax.value_and_grad_from_state
进行梯度计算
这种接口差异导致无法直接在NNX的Optimizer
中使用这类优化算法。
技术解决方案
临时解决方案
通过扩展Optimizer.update
方法,可以临时支持L-BFGS类优化器:
def update(self, grads, value=None, value_fn=None):
# 分离模型定义和参数状态
gdef, state = nnx.split(self.model, self.wrt)
# 包装value_fn以处理NNX状态
def value_fn_wrapped(state):
model = nnx.merge(gdef, state)
return value_fn(model)
# 调用优化器更新,传递额外参数
updates, new_opt_state = self.tx.update(
grads, self.opt_state, state,
grad=grads, value=value, value_fn=value_fn_wrapped
)
# 应用参数更新
new_params = optax.apply_updates(state, updates)
self.step.value += 1
nnx.update(self.model, new_params)
self.opt_state = new_opt_state
这种方法的核心在于:
- 正确处理NNX的状态分离与合并
- 适配
value_fn
的接口要求 - 传递优化器所需的所有额外参数
更优的架构设计
从框架设计角度,更完善的解决方案应考虑:
- 接口扩展:为
Optimizer.update
添加**kwargs
参数,直接转发给底层优化器 - 专用优化器类:为
GradientTransformationExtraArgs
实现专门的优化器包装 - 文档示例:提供使用模式的最佳实践指南
实际应用示例
以下是在NNX中使用L-BFGS优化器的完整示例:
# 模型定义
model = nnx.Linear(M, 1, use_bias=False, rngs=rngs)
optimizer = nnx.Optimizer(model, optax.lbfgs())
# 训练步骤
@nnx.jit
def train_step(model, optimizer, X, Y):
def loss_fn(model):
return jnp.mean((model(X) - Y)**2)
loss, grads = nnx.value_and_grad(loss_fn)(model)
optimizer.update(grads, value=loss, value_fn=loss_fn)
return loss
性能考量
使用这类优化器时需注意:
- 二阶优化算法计算成本较高,适合参数规模不大的场景
- 全批量训练通常效果更好,小批量可能需要调整学习策略
- 状态包装会引入额外开销,但对大多数应用影响不大
未来发展方向
Flax NNX可以考虑:
- 原生支持
GradientTransformationExtraArgs
接口 - 提供内置的linesearch优化器实现
- 优化状态管理以减少包装开销
这种改进将使NNX能够更自然地支持各类高级优化算法,同时保持现有API的简洁性。
总结
通过适当扩展接口,Flax NNX能够有效支持Optax提供的L-BFGS等高级优化算法。这为需要快速收敛或自动学习率调整的应用场景提供了有力工具。开发者可以根据实际需求选择临时解决方案或等待框架的正式支持。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
246
288

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
615
74

React Native鸿蒙化仓库
C++
176
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K