MONAI项目中处理超大图像的方法
2025-06-03 12:51:39作者:滕妙奇
在医学影像分析领域,我们经常会遇到超大尺寸的图像文件。这些图像由于分辨率极高,使用常规的图像处理库如Pillow加载时可能会遇到问题。本文将介绍在MONAI框架中如何处理这类超大图像。
问题背景
当图像尺寸达到30000×10000像素级别时,Pillow库会抛出"DecompressionSizeLimitError"错误,这是Pillow为防止可能的超大解压缩数据而设置的安全限制。相比之下,OpenCV(cv2)能够更灵活地处理这类超大图像。
MONAI中的解决方案
MONAI提供了灵活的图像加载机制,允许开发者自定义图像读取器。核心思路是继承MONAI的ImageReader基类并实现自定义读取逻辑。
自定义OpenCV图像读取器实现
我们可以创建一个基于OpenCV的图像读取器类:
import cv2
from monai.data.image_reader import ImageReader
from typing import Any, Dict, Optional
class OpenCVReader(ImageReader):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
def read(self, data: str, **kwargs):
return cv2.imread(data, cv2.IMREAD_UNCHANGED)
def get_data(self):
# 实现获取图像数据的逻辑
pass
注册自定义读取器
创建好自定义读取器后,需要将其注册到MONAI的LoadImage变换中:
from monai.transforms import LoadImage
# 注册自定义读取器
LoadImage.register_reader(OpenCVReader, ["png", "jpg", "jpeg", "tif", "tiff"])
使用自定义读取器加载图像
注册完成后,就可以像平常一样使用LoadImage变换,MONAI会自动使用我们注册的OpenCV读取器:
loader = LoadImage(reader="OpenCVReader")
image = loader("large_image.tif")
其他优化建议
对于超大图像处理,还可以考虑以下优化措施:
- 分块处理:将大图像分割成小块分别处理
- 降低分辨率:根据实际需求适当降低图像分辨率
- 内存映射:使用内存映射技术减少内存占用
- 延迟加载:只在需要时加载图像数据
总结
MONAI框架提供了高度可扩展的图像加载机制,通过自定义图像读取器,我们可以灵活应对各种特殊场景。对于超大图像处理,结合OpenCV等专业图像库的能力,能够有效解决Pillow等库的限制问题。这种设计体现了MONAI框架的灵活性和可扩展性,使其能够适应各种医学影像处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178