MONAI项目中处理超大图像的方法
2025-06-03 02:36:00作者:滕妙奇
在医学影像分析领域,我们经常会遇到超大尺寸的图像文件。这些图像由于分辨率极高,使用常规的图像处理库如Pillow加载时可能会遇到问题。本文将介绍在MONAI框架中如何处理这类超大图像。
问题背景
当图像尺寸达到30000×10000像素级别时,Pillow库会抛出"DecompressionSizeLimitError"错误,这是Pillow为防止可能的超大解压缩数据而设置的安全限制。相比之下,OpenCV(cv2)能够更灵活地处理这类超大图像。
MONAI中的解决方案
MONAI提供了灵活的图像加载机制,允许开发者自定义图像读取器。核心思路是继承MONAI的ImageReader基类并实现自定义读取逻辑。
自定义OpenCV图像读取器实现
我们可以创建一个基于OpenCV的图像读取器类:
import cv2
from monai.data.image_reader import ImageReader
from typing import Any, Dict, Optional
class OpenCVReader(ImageReader):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
def read(self, data: str, **kwargs):
return cv2.imread(data, cv2.IMREAD_UNCHANGED)
def get_data(self):
# 实现获取图像数据的逻辑
pass
注册自定义读取器
创建好自定义读取器后,需要将其注册到MONAI的LoadImage变换中:
from monai.transforms import LoadImage
# 注册自定义读取器
LoadImage.register_reader(OpenCVReader, ["png", "jpg", "jpeg", "tif", "tiff"])
使用自定义读取器加载图像
注册完成后,就可以像平常一样使用LoadImage变换,MONAI会自动使用我们注册的OpenCV读取器:
loader = LoadImage(reader="OpenCVReader")
image = loader("large_image.tif")
其他优化建议
对于超大图像处理,还可以考虑以下优化措施:
- 分块处理:将大图像分割成小块分别处理
- 降低分辨率:根据实际需求适当降低图像分辨率
- 内存映射:使用内存映射技术减少内存占用
- 延迟加载:只在需要时加载图像数据
总结
MONAI框架提供了高度可扩展的图像加载机制,通过自定义图像读取器,我们可以灵活应对各种特殊场景。对于超大图像处理,结合OpenCV等专业图像库的能力,能够有效解决Pillow等库的限制问题。这种设计体现了MONAI框架的灵活性和可扩展性,使其能够适应各种医学影像处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5