jMolecules使用指南
项目介绍
jMolecules 是一个致力于帮助开发者在Java项目中明确表达架构概念的库。它通过引入注解的方式,支持诸如层次化、洋葱架构和六边形架构等高级设计风格。此项目特别强调通过类型和注解来实现架构层面的清晰可见性,遵循Domain-Driven Design(领域驱动设计,简称DDD)的原则,使得软件架构的设计意图在代码中一目了然。通过jMolecules,开发者可以更方便地实施和维护复杂系统中的架构模式。
项目快速启动
要快速启动使用jMolecules,首先确保你的开发环境已经配置了Java JDK,并且熟悉Maven或Gradle作为构建工具。以下示例以Maven为例:
步骤1:添加依赖
在你的pom.xml文件中添加jMolecules的依赖。由于具体版本可能随时间更新,请访问GitHub仓库的最新发布版进行确认。
<dependencies>
<!-- 添加jmolecules依赖 -->
<dependency>
<groupId>org.jmolecules</groupId>
<artifactId>jmolecules</artifactId>
<version>{latest-version}</version> <!-- 替换为实际的最新版本号 -->
</dependency>
</dependencies>
步骤2:使用注解
在你的Java类中开始使用jMolecules提供的注解,比如标记一个服务层组件:
import org.jmolecules.architecture.layered.DomainService;
@DomainService
public class YourDomainService {
// 业务逻辑代码...
}
这只是一个简单的例子,实际上jMolecules提供了更多针对特定架构风格的注解,如应用于领域模型、应用服务等。
应用案例和最佳实践
jMolecules的应用广泛,尤其是在设计和实现具有清晰架构边界的应用时。以Spring RESTBucks为例,这是一个展示如何结合Spring框架与jMolecules的示例应用。它利用jMolecules的注解来定义服务层、领域层等,确保架构上的分层明显,便于理解和维护。
最佳实践:
- 明确每一层的职责,正确选择jMolecules对应的注解。
- 利用其提供的结构化方式,增强代码的自我解释能力,减少对架构文档的依赖。
- 在大型项目中,遵循架构设计原则,逐渐引入和应用jMolecules的概念,避免一次性重构带来的风险。
典型生态项目
jMolecules不仅仅适用于标准Java项目,它还特别适合于融入Spring生态系统。例如,jmolecules-examples仓库中的Spring RESTBucks就是将jMolecules与Spring Boot结合的典范,演示了如何创建一个基于超媒体的REST服务,同时也展现了如何有效地使用jMolecules来保持应用程序的架构清晰。
通过上述步骤和说明,开发者可以开始探索并应用jMolecules来加强他们的软件架构描述和实现。记住,实践是检验真理的唯一标准,不断尝试和调整,以找到最适合您项目需求的使用方法。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00