在Presidio中结合模式匹配提升NER识别准确率
2025-06-13 05:53:18作者:戚魁泉Nursing
背景介绍
在自然语言处理领域,命名实体识别(NER)是一个重要任务,用于从文本中提取特定类型的实体信息。Presidio作为微软开源的隐私数据识别与保护工具,提供了灵活的框架来识别敏感信息。但在实际应用中,单纯依赖预训练模型可能会遇到识别不准确的问题。
问题分析
在使用GLiNER模型进行人名识别时,系统会将"customer"、"owner"等普通名词错误识别为"PERSON NAME"实体。这是因为:
- GLiNER模型需要特定实体标签(如"PERSON NAME")
 - 模型本身对大小写不敏感
 - 缺乏对实体特征的显式约束
 
解决方案
Presidio提供了PatternRecognizer组件,可以通过正则表达式对识别结果进行验证。我们可以采用两阶段处理流程:
- 模型识别阶段:使用GLiNER模型初步识别可能的"PERSON NAME"实体
 - 模式验证阶段:通过正则表达式验证识别结果是否符合人名特征
 
实现方法
自定义正则模式
定义人名识别模式,要求实体中至少有一个单词以大写字母开头:
name_pattern = Pattern(
    name="name_pattern",
    regex=r"\b[A-Z][a-z]*?\b",  # 匹配以大写字母开头的单词
    score=0.85  # 置信度分数
)
创建组合识别器
通过继承EntityRecognizer类创建自定义识别器,实现两阶段验证:
class ValidatedNameRecognizer(EntityRecognizer):
    def __init__(self, model_recognizer, pattern_recognizer):
        self.model = model_recognizer
        self.pattern = pattern_recognizer
    
    def analyze(self, text, entities, **kwargs):
        # 第一阶段:模型识别
        model_results = self.model.analyze(text, entities, **kwargs)
        
        # 第二阶段:模式验证
        validated_results = [
            result for result in model_results 
            if self.pattern.validate(result.text)
        ]
        
        return validated_results
技术要点
- 正则表达式设计:使用
\b[A-Z][a-z]*?\b确保人名首字母大写 - 置信度控制:设置适当的score阈值平衡召回率和准确率
 - 组合策略:先宽泛识别再严格过滤,保证不遗漏真正的人名
 
应用建议
- 对于不同语言环境,需要调整正则表达式模式
 - 可以结合白名单机制进一步提高准确率
 - 考虑使用机器学习模型来优化模式匹配的阈值
 
总结
通过在Presidio中结合模型识别和模式验证,我们能够有效提升人名识别的准确率。这种混合方法既利用了深度学习模型的语义理解能力,又通过规则约束保证了结果的合理性,在实际应用中展现了良好的效果。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447