Locust项目中GRPC客户端初始化死锁问题分析与解决方案
问题背景
在使用Locust进行性能测试时,当测试目标为Milvus数据库集群时,测试程序在启动阶段出现了死锁现象。具体表现为程序在初始化Milvus客户端时卡住,无法继续执行后续测试任务。这个问题特别出现在使用Milvus官方Python客户端(基于GRPC实现)的场景下。
问题现象分析
从日志中可以观察到几个关键现象:
- 程序在打印"initializing milvus client..."后停止响应
- 最终抛出KeyboardInterrupt异常,表明程序被强制终止
- GRPC内部线程出现异常,涉及通道连接状态监控
- 线程锁相关操作出现问题,特别是在
threading.py
的__enter__
方法处
根本原因
经过深入分析,问题的根本原因在于:
-
HTTP用户类不适用:原测试代码使用了Locust的HttpUser作为基类,而实际测试的是GRPC服务,两者在底层实现机制上存在差异。
-
GRPC与Locust的兼容性问题:GRPC默认使用asyncio作为事件循环,而Locust使用gevent进行协程管理,两者在事件循环机制上存在冲突。
-
线程同步问题:GRPC客户端在初始化时会创建多个后台线程进行连接状态监控,这些线程与Locust的gevent协程环境产生了死锁。
解决方案
针对这一问题,我们采用了以下解决方案:
1. 使用专门的GRPC用户类
创建了一个继承自Locust User基类的GrpcUser类,专门用于GRPC服务测试。这个类包含以下关键组件:
class GrpcUser(User):
abstract = True
stub_class = None
def __init__(self, environment):
super().__init__(environment)
self._channel = grpc.insecure_channel(self.host)
interceptor = LocustInterceptor(environment=environment)
self._channel = grpc.intercept_channel(self._channel, interceptor)
self.stub = self.stub_class(self._channel)
2. 初始化GRPC的gevent兼容模式
在GRPC用户类中,我们首先配置GRPC使用gevent而非默认的asyncio:
import grpc.experimental.gevent as grpc_gevent
grpc_gevent.init_gevent()
这一步确保了GRPC能够与Locust的gevent协程环境协同工作。
3. 实现GRPC拦截器
为了将GRPC请求纳入Locust的统计系统,我们实现了一个自定义拦截器:
class LocustInterceptor(ClientInterceptor):
def intercept(self, method, request_or_iterator, call_details):
# 记录请求开始时间
start_time = time.perf_counter()
response = None
exception = None
try:
response = method(request_or_iterator, call_details)
response_length = response.result().ByteSize()
except grpc.RpcError as e:
exception = e
# 触发Locust统计事件
self.env.events.request.fire(
request_type="grpc",
name=call_details.method,
response_time=(time.perf_counter() - start_time) * 1000,
response_length=response_length,
response=response,
exception=exception,
)
return response
实际应用效果
应用上述解决方案后:
- Milvus客户端能够正常初始化,不再出现死锁
- GRPC请求被正确记录到Locust的统计系统中
- 测试任务能够按预期执行
- 性能指标收集完整准确
经验总结
-
协议匹配原则:在性能测试中,测试工具的用户类应该与实际测试的协议类型相匹配。HTTP服务使用HttpUser,GRPC服务则应使用专门的GRPC用户类。
-
事件循环一致性:当使用基于协程的测试工具时,需要确保所有组件使用相同的事件循环机制。Locust使用gevent,因此需要配置GRPC也使用gevent模式。
-
监控线程管理:对于会产生后台线程的客户端库,需要特别注意这些线程与测试框架的兼容性,必要时进行适当的配置调整。
-
请求拦截机制:对于非HTTP协议,可以通过实现拦截器或中间件的方式将请求纳入测试框架的统计系统。
通过这一案例,我们不仅解决了具体的GRPC死锁问题,也为类似场景下的协议兼容性问题提供了可借鉴的解决方案思路。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









