Building Data Genome Project 使用教程
1. 项目介绍
1.1 项目概述
Building Data Genome Project 是一个开源数据集,包含了来自507个非住宅建筑的每小时整体建筑电气表数据。该项目旨在为性能分析和算法基准测试提供数据支持。数据集包括建筑的元数据,如面积、天气和主要用途类型。该数据集可用于基准测试各种统计学习算法和其他数据科学技术,也可作为处理大量非住宅建筑测量性能数据的教学或学习工具。
1.2 项目目标
- 提供一个开放的数据集,用于建筑性能分析和算法基准测试。
- 支持研究人员在建筑能源分析领域开发和测试新的数据驱动方法。
- 通过提供一致的基准数据集,促进研究方法的比较和改进。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python和Jupyter Notebook。你可以通过以下命令安装Anaconda Python Distribution,它包含了Python和Jupyter Notebook。
wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
bash Anaconda3-2023.07-1-Linux-x86_64.sh
2.2 克隆项目
使用Git克隆项目到本地:
git clone https://github.com/buds-lab/the-building-data-genome-project.git
cd the-building-data-genome-project
2.3 安装依赖
安装项目所需的Python依赖包:
pip install -r requirements.txt
2.4 运行示例Notebook
项目中提供了一些示例Jupyter Notebook,帮助你快速了解数据集的使用。你可以通过以下命令启动Jupyter Notebook:
jupyter notebook
然后打开浏览器,访问http://localhost:8888
,找到并运行notebooks
目录下的示例Notebook。
3. 应用案例和最佳实践
3.1 数据探索
通过运行notebooks/Meta data overview.ipynb
和notebooks/Temporal data overview.ipynb
,你可以了解建筑元数据和时间序列数据的概况。
3.2 性能分析
使用notebooks/Performance analysis.ipynb
进行建筑性能分析,包括能耗预测和异常检测。
3.3 算法基准测试
通过notebooks/Algorithm benchmarking.ipynb
,你可以对不同的机器学习算法进行基准测试,评估其在建筑数据上的表现。
4. 典型生态项目
4.1 Building Data Genome Project 2
Building Data Genome Project 2 是该项目的扩展版本,包含了更多的建筑和更长时间的数据。你可以通过以下链接访问:
Building Data Genome Project 2
4.2 ASHRAE Great Energy Predictor III 竞赛
该项目的数据集被用于ASHRAE Great Energy Predictor III 竞赛,这是一个机器学习竞赛,旨在预测建筑的长期能耗。你可以通过以下链接了解更多信息:
ASHRAE Great Energy Predictor III
通过这些模块的学习和实践,你将能够充分利用Building Data Genome Project进行建筑性能分析和算法开发。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









