神经网络与乔姆斯基层次结构项目教程
2024-09-12 09:38:56作者:傅爽业Veleda
1. 项目目录结构及介绍
neural_networks_chomsky_hierarchy/
├── models/
│ ├── ndstack_rnn.py
│ ├── rnn.py
│ ├── stack_rnn.py
│ ├── tape_rnn.py
│ └── transformer.py
├── tasks/
│ ├── cs/
│ ├── dcf/
│ ├── regular/
│ └── task.py
├── experiments/
│ ├── constants.py
│ ├── curriculum.py
│ ├── example.py
│ ├── range_evaluation.py
│ ├── training.py
│ └── utils.py
├── README.md
└── requirements.txt
目录结构介绍
- models/: 包含各种神经网络模型的实现,如RNN、Stack-RNN、Tape-RNN和Transformer。
- tasks/: 包含不同层次的任务,如上下文敏感任务(cs)、确定性上下文无关任务(dcf)和正则任务(regular)。
task.py定义了抽象的GeneralizationTask类。 - experiments/: 包含实验相关的代码,如训练常量、训练课程、训练脚本、评估循环和实用函数。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目依赖的Python包列表。
2. 项目启动文件介绍
项目的启动文件是 experiments/example.py。这个文件提供了一个示例,展示了如何训练和评估一个RNN在Even Pairs任务上的表现。
启动文件内容
# experiments/example.py
# 导入必要的模块
from experiments.training import train_and_evaluate
from tasks.regular.even_pairs import EvenPairsTask
from models.rnn import RNN
# 定义任务和模型
task = EvenPairsTask()
model = RNN(hidden_size=64)
# 训练和评估模型
train_and_evaluate(task, model)
使用方法
- 确保已经安装了所有依赖项。
- 激活conda环境并设置
PYTHONPATH。 - 运行以下命令启动示例训练和评估:
python experiments/example.py
3. 项目的配置文件介绍
项目的配置文件主要是 experiments/constants.py,它定义了训练和评估过程中使用的常量。
配置文件内容
# experiments/constants.py
# 训练常量
BATCH_SIZE = 32
LEARNING_RATE = 0.001
NUM_EPOCHS = 100
# 评估常量
EVAL_BATCH_SIZE = 64
EVAL_INTERVAL = 10
配置文件说明
- BATCH_SIZE: 训练时的批次大小。
- LEARNING_RATE: 优化器的学习率。
- NUM_EPOCHS: 训练的总轮数。
- EVAL_BATCH_SIZE: 评估时的批次大小。
- EVAL_INTERVAL: 评估间隔,即每训练多少轮进行一次评估。
通过修改这些常量,可以调整训练和评估的行为。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895