Outlier Exposure:提升深度学习异常检测的利器
2024-09-16 10:55:46作者:傅爽业Veleda
项目介绍
Outlier Exposure 是一个用于提升深度学习模型异常检测性能的开源项目。该项目基于论文 Deep Anomaly Detection with Outlier Exposure(ICLR 2019),通过使用分布外的数据集对分类器进行微调,使模型学习到区分异常样本和分布内样本的启发式方法。这些启发式方法能够泛化到新的分布中,从而显著提升异常检测的准确性。
项目代码库中包含了NLP实验以及针对SVHN、CIFAR-10、CIFAR-100和Tiny ImageNet的多类分类和校准实验的代码。此外,项目还提供了80 Million Tiny Images和300K Random Images等异常数据集的下载链接,方便用户进行实验和验证。
项目技术分析
Outlier Exposure 的核心技术在于利用分布外的数据集(Outlier Dataset)对模型进行微调。与传统的异常检测方法(如ODIN)不同,OE方法不需要为每个OOD数据集训练一个单独的模型,也不需要在OOD数据集的“验证”样本上进行调优。这种方法不仅简化了模型的训练流程,还提高了模型的泛化能力。
项目使用了Python 3+和PyTorch 0.4.1+作为开发环境,确保了代码的兼容性和可扩展性。通过可视化的ROC曲线,用户可以直观地评估模型的异常检测性能。
项目及技术应用场景
Outlier Exposure 适用于多种深度学习异常检测场景,特别是在以下领域具有广泛的应用前景:
- 网络安全:检测网络流量中的异常行为,识别潜在的攻击或入侵。
- 金融风控:识别交易中的异常模式,预防欺诈行为。
- 医疗诊断:检测医学影像中的异常区域,辅助医生进行疾病诊断。
- 工业质检:在生产线上检测产品的缺陷,提高产品质量。
项目特点
- 高效性:通过一次训练即可适应多种分布外的数据集,无需为每个数据集单独训练模型。
- 泛化能力强:模型学习到的启发式方法能够泛化到新的数据分布中,适用于多种应用场景。
- 易于使用:项目提供了详细的代码示例和数据集下载链接,用户可以快速上手进行实验。
- 开源社区支持:项目代码开源,用户可以自由修改和扩展,同时可以通过社区获取技术支持和反馈。
总之,Outlier Exposure 是一个功能强大且易于使用的开源项目,能够显著提升深度学习模型的异常检测性能。无论你是研究者还是开发者,都可以通过该项目获得实用的技术支持和灵感。快来尝试吧!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355