Outlier Exposure 开源项目教程
2024-09-13 09:51:23作者:霍妲思
1. 项目介绍
Outlier Exposure(OE)是一个用于改进深度学习模型异常检测性能的方法。该项目通过使用一个分布外的数据集,对分类器进行微调,使其能够学习区分异常和分布内样本的启发式方法。这些启发式方法能够泛化到新的分布中,从而提高异常检测的性能。
OE 方法的关键在于它不需要为每个分布外数据集训练一个单独的模型,也不需要在分布外数据集的“验证”示例上进行调优。该项目包含了一些校准和多类分类实验的代码,涵盖了 SVHN、CIFAR-10、CIFAR-100 和 Tiny ImageNet 等数据集。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了以下依赖:
- Python 3+
- PyTorch 0.4.1+
安装步骤
-
克隆项目仓库:
git clone https://github.com/hendrycks/outlier-exposure.git cd outlier-exposure -
安装依赖:
pip install -r requirements.txt
快速启动代码示例
以下是一个简单的代码示例,展示了如何使用 Outlier Exposure 进行异常检测:
import torch
from outlier_exposure.models import get_model
from outlier_exposure.datasets import get_dataset
from outlier_exposure.train import train_model
# 加载数据集
train_dataset = get_dataset('cifar10', train=True)
test_dataset = get_dataset('cifar10', train=False)
# 加载模型
model = get_model('resnet18', num_classes=10)
# 训练模型
train_model(model, train_dataset, test_dataset, epochs=50)
# 保存模型
torch.save(model.state_dict(), 'cifar10_resnet18.pth')
3. 应用案例和最佳实践
应用案例
Outlier Exposure 可以应用于多种场景,包括但不限于:
- 图像分类:在 CIFAR-10 和 SVHN 等数据集上进行图像分类,并通过 OE 方法提高模型的异常检测能力。
- 自然语言处理:在 NLP 任务中,使用 OE 方法检测输入文本中的异常。
最佳实践
- 选择合适的分布外数据集:选择与目标任务相关的分布外数据集,以提高模型的泛化能力。
- 调整超参数:根据具体任务调整训练轮数、学习率等超参数,以获得最佳性能。
- 模型评估:在训练过程中定期评估模型性能,确保其在分布内和分布外数据上的表现。
4. 典型生态项目
相关项目
- PyTorch:Outlier Exposure 项目基于 PyTorch 框架开发,PyTorch 提供了强大的深度学习工具和库。
- TorchVision:用于加载和预处理图像数据集,与 Outlier Exposure 项目配合使用。
- Hugging Face Transformers:在 NLP 任务中,可以使用 Hugging Face 的 Transformers 库加载预训练模型,并结合 OE 方法进行异常检测。
社区支持
- GitHub Issues:通过 GitHub Issues 可以报告问题、提出建议和获取帮助。
- Discussions:在项目的 GitHub Discussions 页面可以参与讨论,分享使用经验和最佳实践。
通过以上内容,你可以快速上手 Outlier Exposure 项目,并在实际应用中发挥其强大的异常检测能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K